Sustainability in Refrigeration Systems –

Opportunities for energy efficiency improvements in low temperature freezing systems

> Frozen Dessert Center 2022 ANNUAL TECHNICAL CONFERENCE

2022 Annual Technical Conference

Douglas Reindl, Ph.D., P.E. Professor, Mechanical Engineering Director, Industrial Refrigeration Consortium University of Wisconsin-Madison

October 17 & 18, 2022

The industrial sector is consistently the largest energy consumer

Share of total U.S. energy consumption by end-use sectors, 2020

Total = 92.94 quadrillion British thermal units

ela

Source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 2.1, April 2021, preliminary data

Note: Sum of individual percentages may not equal 100 because of independent rounding.

Within the manufacturing sector, food industry is in the top five

Manufacturing Energy Consumption (TBtu)

Source: Manufacturing Energy Flows, DOE Office of Energy Efficiency & Renewable Energy, (2010).

Frozen desserts require energy-intensive freezing systems for hardening!

- Mechanical freezing systems
 - Predominantly dynamic freezing systems
 - Common configurations include spiral, tunnel
 - Capital cost intensive
 - Not optimized
- Cryogenic freezing systems
 - Low capital cost but high operating costs
 - Quick freezing times
 - Sustainability?

AIM Act phasing down HFC refrigerants

Phasedown Schedule

The following illustrates the HFC production and consumption phasedown schedule as outlined in the AIM Act.

Next generation fluorochemical refrigerants

- Fluorochemical refrigerant choices are limited and have additional concerns
 - Many are "slightly flammable" (2L classified by ASHRAE 34)
 - Medium and low pressure refrigerant alternatives have moderately high GWP
 - Many options have poorer inherent operating efficiencies
 - Owners are experiencing phase-out fatigue
 - Concerns about TFA and PFAS and inclusion of HFC and HFO refrigerants in PFAS-related phase-out planning

End-users have a lot of balls in the air!

Mechanical blast freezing systems

- Large insulated rooms with high powered fans (40+ mph) that force cold air (-40 $^{\circ}$ F) over product
- Used in food processing industry to rapidly cool food products like poultry, pizza, vegetables, and ice cream before moving into holding freezers or packaged for transport.
- Cooling times range from 10 to 60+ minutes

Blast freezers present opportunities for improved performance and efficiency

- Lots of "Brute Force" to achieve product freezing
- Air flow is not optimized (semi not sportscar)
- Often difference between design and actual freezing performance

What are we doing about it?

• <u>Project Goal:</u>

Reduce the end-use energy consumption, source fuel requirements, and GHG emissions associated with the manufacture of frozen foodstuffs

• <u>Approach:</u>

- Conduct research to determine desirable characteristics of the next generation of low temperature freezing systems
- Identify candidate field sites with low-temperature freezing systems
- Screen for potential EE/performance improvement opportunities
- Collaborate with end-user to evaluate EE opportunities and implement ECMs with assessment of impact

Research team

- Eric Alar, Ph.D. Student, Mechanical Engineering
- Tyler Young, M.S. Student, Mechanical Engineering
- Todd Jekel, Assistant Director, IRC
- Marc Claas, Research Engineer, IRC
- Douglas Reindl, Professor & Director, IRC
- Greg Nellis, Professor, Mechanical Engineering

Energy efficiency improvement opportunities

- Food freezing system
 - Improved air-side
 - Air flow patterns
 - Air delivery across product
 - Fan and fan motor efficiency
 - Improved blast freezing enclosures
 - Minimized air infiltration
 - Tighten enclosure
 - Improved evaporator design / integration
 - Optimized coil selection
 - Improved refrigerant feed
 - Improved defrost controls & sequencing

Energy efficiency improvement opportunities

- Refrigeration systems infrastructure
 - Compressor sequencing & control
 - Condenser & head pressure minimum/control
 - Oil cooling
 - Suction pressure setpoints
 - Make-up liquid throttling (single vs. multiple stages)
 - Other

Modeling blast freezers with computational fluid dynamics (CFD) in an effort to quantify potential methods for freezing performance improvement

Predicting performance of a freezing system begins with a solid model of the blast freezer

- Plant drawings
- On-site measurements
- Capture major components and design features Plant A Plant B

Simplifying complex components – spiral belt

• Use simple spiral to reduce element count

Full-scale simple spiral

2.8 million elements with no belt holes 1.3 million elements

Evaluation of airflow inside Plant A's spiral freezer

• Plant A's fan curve data applied to each "Fan" surface

- Majority of airflow hits ceiling and back wall
- Airflow that does hit product is towards the bottom of the spiral where product is colder

Plan view cross section of spiral

18

Spiral velocity results from CFD analysis

Performance metrics

- Spiral point clouds for average velocity and velocity distribution across product
- Average air velocity across evaporator coils
- Throughput rate
- Product normalized energy consumption

Plant A's current performance

	Avg. Velocity [ft/min] {m/s}
Spiral	672 {3.42}
Coils	552 {2.81}

Energy per Product	Throughput
[Btu/prod]	[prod/min]
173	145

Existing spiral freezer (Plant A)

Average Velocity	Spiral	Coils
[m/s]	3.42	2.81
[fpm]	672	552

Air-side modifications to improve performance

Baffling modifications for Plant A

Same fans currently used by Plant A

Top portion of spiral now receives greatest flow

4 ft straight long throw adapter

Average Velocity	Spiral	Coils
[m/s]	3.00	2.12
[fpm]	591	417

4 ft bent long throw adapter

Average Velocity	Spiral	Coils
[m/s]	3.59	2.61
[fpm]	707	514

4.75 ft bent long throw adapter

Average Velocity	Spiral	Coils
[m/s]	3.58	2.49
[fpm]	705	490

5 ft bent long throw adapter

Average Velocity	Spiral	Coils
[m/s]	3.74	2.41
[fpm]	736	474

6 ft bent long throw adapter

Average Velocity	Spiral	Coils
[m/s]	3.30	2.54
[fpm]	650	500

5 ft bent & chamfered long throw adapter

Average Velocity	Spiral	Coils
[m/s]	3.69	2.48
[fpm]	727	488

5 ft bent & chamfered LTA with additional baffing

Average Velocity	Spiral	Coils
[m/s]	3.33	2.48
[fpm]	656	488

Are the CFD model results believable?

Surrogate product – "phantom"

DC battery to power heater mV DC to 4-20 mA transmitters and equipment NMC 12V 30AH

Various data loggers

The Phantom is an instrument that simulates the product being frozen for the purpose of gathering heat transfer data within the operating blast freezing system

Preparing to run the Phantom

Dry run of the phantom in a spiral freezer

Phantom running during production

Comparing CFD with Phantom results

What about the product itself?

Thermal model of food product being frozen

Product thermal properties

Product thermal model results

Effect of velocity on product

Exiting temperature vs belt speed

Optimizing freezing process

Velocity profile: spiral_midlane_existing_revEA.csv Freezing time (Mid temp <= 10F): 1453.6273 seconds Elapsed time is 2.391258 seconds. **Temperature delta T: 10.4441 @ a belt speed of 164.8625** Velocity profile: spiral_midlane_existing_revEA.csv Freezing time (Mid temp <= 10F): 1535.9025 seconds Elapsed time is 2.705465 seconds.

Temperature delta T: 6.7566 @ a belt speed of 135.8625 Velocity profile: spiral_midlane_existing_revEA.csv Freezing time (Mid temp <= 10F): 1571.7726 seconds Elapsed time is 2.586108 seconds.

Temperature delta T: 2.7032 @ a belt speed of 142.8406 Velocity profile: spiral_midlane_existing_revEA.csv Freezing time (Mid temp <= 10F): 1522.6418 seconds Elapsed time is 2.524399 seconds.

Temperature delta T: 5.8864 @ a belt speed of 157.3406 Velocity profile: spiral_midlane_existing_revEA.csv Freezing time (Mid temp <= 10F): 1605.9942 seconds Elapsed time is 2.509586 seconds.

Temperature delta T: 0.62127 @ a belt speed of 146.3977 Velocity profile: spiral_midlane_existing_revEA.csv Freezing time (Mid temp <= 10F): 1571.7726 seconds Elapsed time is 2.554558 seconds.

Temperature delta T: 2.7032 @ a belt speed of 142.8406 Velocity profile: spiral_midlane_existing_revEA.csv Freezing time (Mid temp <= 10F): 1616.012 seconds Elapsed time is 2.485224 seconds.

Temperature delta T: 0.43622 @ a belt speed of 148.1932 Velocity profile: spiral_midlane_existing_revEA.csv Freezing time (Mid temp <= 10F): 1596.6667 seconds Elapsed time is 2.450556 seconds.

Temperature delta T: 1.5034 @ a belt speed of 150 Velocity profile: spiral_midlane_existing_revEA.csv Freezing time (Mid temp <= 10F): 1612.8954 seconds Elapsed time is 2.501893 seconds.

Temperature delta T: 0.093673 @ a belt speed of 147.294 Velocity profile: spiral_midlane_existing_revEA.csv Freezing time (Mid temp <= 10F): 1606.0127 seconds Elapsed time is 2.502074 seconds.

Temperature delta T: 0.62118 @ a belt speed of 146.3977 Velocity profile: spiral_midlane_existing_revEA.csv Freezing time (Mid temp <= 10F): 1615.8581 seconds Elapsed time is 2.505313 seconds.

Temperature delta T: 0.17078 @ a belt speed of 147.7432 Velocity profile: spiral_midlane _existing_revEA.csv Freezing time (Mid temp <= 10F): 1614.3259 seconds Elapsed time is 2.552271 seconds.

Temperature delta T: 0.022483 @ a belt speed of 147.4904

Iteration #1 Iteration #2

...3

...4 etc.

Optimum belt speed

Monte Carlo simulation with varying velocity distribution (two step/regime) across product

Belt speed optimizer process flow

Pareto front

Pareto front – deep dive

Refinement

- 10 regimes
- Same time duration
- Random velocities with constraints
- Thousands of unique distributions

...+Randomization

Optimized air velocity Pareto front

Model results

Future work

- Field evaluate different blast freezer configurations
 - Phantom can serve as a benchmarking tool
 - Measure air infiltration rate vs. best practice
- CFD model to establish baseline performance and evaluate strategies to improve air-flow
- Build optimization algorithms that account for energy cost, fan power, etc., that can be calibrated to many systems
- Validate results from facility modifications
- Transplant knowledge to end-users and freezer manufacturers

Airflow optimization - existing and new builds

 Use optimal velocity distributions to guide baffling modifications and hypothetical designs

Additional Baffling for Existing Designs

New Build Designs

New build design

- Same fans currently used by Plant A
- Opposing fans creates a "tornado" effect

Drawback: Area 24.3% larger, however Volume 5.6% smaller

New build design (four fans)

- Same fans currently used by Plant A
- Even greater energy savings

Drawback: Area 24.3% larger, however Volume 5.6% smaller

Future Work

- Gather performance data for more blast freezers
- Find baffling configurations for a wider range of blast freezer designs
- Finding optimal flow angle for maximum heat transfer with minimal flow resistance
- Optimize "new build" configurations

Questions?