Flavor Challenges in Non-dairy Frozen Dessert

Monica Kapoor
Oct 23-24, 2023
2 EDLONG ${ }^{\circ}$ Everything Dairy Can Be:

Speaker Bio

- Monica Kapoor is a Principal Scientist at Edlong Corporation in their Applications Team. In this role, she solves customer challenges in flavor by working side-by-side with customer R\&D and Edlong flavorists to deliver flavor solutions.
- Monica has over 20 years of experience in the food industry working for leading food ingredient and flavor companies where she continues to lead food ingredient focused R\&D in a variety of food ingredients and products such as dairy, fats and oils, beverages, seasonings, and plant-based systems.
- Monica received her M.S. in Food Science from Kansas State University and her B.S. in Biology from Beloit College.

Agenda

1. Who is Edlong?
2. Where do flavor challenges in non-dairy frozen desserts come from?
3. Strategies to mitigate flavor challenges in non-dairy frozen
 desserts.

EDLONG THEN

1914

EDLONG NOW

FEMA
efoc
C ULINARY $_{\text {IHE }}^{\text {IHSTITUTE }}$ $\underbrace{\text { INSTITUTE }}_{\text {OF AMERICA }^{\circ}}$ \rightarrow

CHICAGOLAND
FOOD \& BEVERAGE I'FT
eeding the minds

certified WBENC
 COMPANIES TO WORKFOR INTHE NATION

Where Do Flavor
 Challenges in Non-Dairy Frozen Desserts Come From?

Non-Dairy Frozen Dessert Manufacture

Source: dairyprocessing.com

Ice Cream
*Sources of plant-based frozen dessert can be nut, legume, fruit, grain. In this example, we focus on nut.

Non-Dairy Frozen Desserts

Factors influencing the flavor of non-dairy frozen desserts

1. Ingredients

OAT MILK (WATER, OATS), LIQUID SUGAR (SUGAR, WATER), CORN SYRUP, COCONUT OIL, WHEAT FLOUR, WATER, SUGAR, BROWN SUGAR, COCOA (PROCESSED WITH ALKALI), SOYBEAN OIL, CHOCOLATE LIQUOR, PEA PROTEIN, FAVA BEAN PROTEIN, TAPIOCA FLOUR, NATURAL FLAVOR, VANILLA EXTRACT, GUAR GUM, MOLASSES, SALT, LOCUST BEAN GUM, COCOA BUTTER, SUNFLOWER LECITHIN, SOY LECITHIN, INVERT SUGAR.

Impact of Ingredients

Sensory perception of ice cream and plant-based alternatives evaluated blinded and with ingredient lists

Sample Name	Ingredients
Dairy	Cream, modified milk Ingredients, sugars (sugar, glucose), concentrated skim milk and/or skim milk powder, vanilla bean seeds, vanilla extract, tara gum, mono \& diglycerides, natural flavour, carob bean gum, guar gum
Frozen Dairy Dessert (FDD)	Modified milk ingredients, water, sugars (sugar, glucose), coconut Oil, vanilla extract, mono and diglycerides, tara gum, guar gum, natural vanilla flavour, carob bean gum, annato, turmeric extract.
Coconut	Coconut base (filtered water, coconut), sugars (cane sugar, tapioca syrup), coconut oil, pea protein, locust bean gum, guar gum, natural flavour, vanilla bean.
Cashew	Cashew base (filtered Water, Cashews), sugars (cane sugar, tapioca syrup), coconut oil, pea protein, sea salt, locust bean gum, vanilla extract, guar gum, natural flavour.
Soy	Soymilk (filtered water, soybeans), tapioca syrup, cane sugar, soybean oil, inulin, locust bean gum, gellan gum, guar gum, natural flavour.

$\checkmark 117$ participants evaluated the sensory attributes using CATA technique

Impact of Ingredients

Sensory Perception Mapping

Impact of Protein Ingredients

Sortribute Intensities of Selected Plant and Dairy Proteins

Flavor Variability in Pea Protein from Various Suppliers

Biplot (axes F1 and F2: $\mathbf{3 0 . 6 0} \%$)

Protein - Flavor Interactions

Table 2. Current understanding of protein-flavour binding mechanisms

Type of interactions	Secondary molecular interactions	Regions or groups of proteins involved	Reversibility	Example of flavours
Physicochemical interactions	Hydrophobic interactions	Interior hydrophobic area of proteins	Reversible	Ketones, ${ }^{[6,26,80]}$ aldehydes, ${ }^{[6]}$ alcohols, ${ }^{[78]}$ ester ${ }^{[62,81]}$
	Hydrogen bonds	$\begin{aligned} & -\mathrm{OH},-\mathrm{COOH}, \\ & -\mathrm{SH} \end{aligned}$	Reversible	Aliphatic alcohols, ${ }^{[46,78]}$ lactone, ${ }^{[25]}$ volatile acids ${ }^{[25]}$
	lonic bonds/electrostatic linkages	$-\mathrm{NH}_{2},-\mathrm{OH}$	Reversible	Volatile acid ${ }^{[25,82]}$
	van der Waals forces		Reversible	Hydrocarbons ${ }^{[9,46]}$
Chemical bondings	Covalent linkages	-S-S-, -SH,-NH2	Irreversible	Aldehydes, ${ }^{[79]}$ vanillin, ${ }^{[83]}$ sulphur containing flavours ${ }^{[84]}$

Kun, D., Arntfield, S. D., 2016. Effect of protein-flavour binding on flavour delivery and protein functional properties: A special emphasis on plant-based proteins

Protein - Flavor Interaction: Hydrophobic Binding

\checkmark Flavor muting
\checkmark Loss of flavor over-time

Figure 4. Opportunities for flavour to interact with protein molecules (Schematic model adapted and modified from Reineccius (2006)) ${ }^{[4]}$

Impact of Fats and Oils

\checkmark Mouthfeel

\checkmark Due to difference in SFC vs. butterfat
\checkmark Blend fats to get similar SFC (e.g. coconut + soy oil)
\checkmark Oxidation
\checkmark Factor in oxidative stability when formulating (e.g. High Oleic oils)

Fig. 3.1 Variation of liquid fat content with temperature for fats suitable for use in ice cream

Strategies To Mitigate Flavor Challenges In Non-Dairy Frozen Desserts

Strategies To Mitigate Flavor Challenges In Non-Dairy Frozen Desserts

1. Off-flavor masking
2. Using highly aromatic flavors
3. Congruent Flavor Technique
4. Off-note reduction (process-driven)
5. Fermentation (e.g. Fermented pea protein)
6. Volatilization of off-flavors (e.g. Direct-steam inject)

1. Masking

Masking vs. blocking

- Masking: using compounds to neutralize off-notes without imparting characteristic flavor
- Blocking: happens at the taste receptor site, using compounds to bind specific off-note molecule \longrightarrow changing the molecular format \longrightarrow incompatible to attach at the receptor site.

More common in pharma/ drug industry.

T2R BITTER TASTE RECEPTOR
...on cells in the lingual taste bud
Single taste cells
display a variety of
T2R receptors. In total,
ver 30 tyes. Some
broadly tuned, others
very specific.
Chandrashekar, Jayaram, et al. "T2Rs function as bitter taste receptors." Cell 100.6 (2000): 703.711.

Neural activators; may secrete small amounts of CCK, GLP-1.
Herness, Scott, and Fang-li Zhao. "The neuropeptides CCK and NPY and the changing view of cell-to-cell communication in the taste bud, Physiology \& behavior 97.5 (2009): 581-591.

Masking Techniques

\checkmark Mixture suppression

- Using a strong taste to mask other (e.g. sugar, NaCl - beware FPD)
\checkmark Using masking flavors
- Different technologies from different flavor houses

"A spoonful of sugar helps
the medicine go down."

2. Using Highly Aromatic Flavors

\checkmark High aromatic flavors or extractives to dominate off-notes
\checkmark E.g. blueberry flavor, banana flavor, vanilla, etc.)
\checkmark Odor-induced Taste Enhancement (OITE)

Zhang, D., et al. 2023
Cross modal sensory interaction of taste and smell

3. Congruent Flavor Technique

- Select flavor profile that work with the note in your base mix.

Mix undertone Brown caramelic Brown, bitter Cereal	\longrightarrowCongruent Flavor Caramel, Toffee Chocolate Sugar Cookies

- Some masking work might still be needed to clean up other undesirable off-note (beany, grassy, etc.)

Strategies to mitigate lack of mouthfeel

\checkmark Select appropriate Fats and oils, or combination thereof, to create SFC like SFC in milkfat
\checkmark Using mouthfeel flavors \checkmark Enhances perception of creaminess and fatty mouthfeel.
\checkmark Proprietary technology

Key Take Aways

- Ingredients are one of the major factors contributing to flavor challenges in nondairy frozen desserts
- Alternative proteins and fats
- Ingredient selection matters
- Major flavor challenges include:
- Inherent (off) flavors from ingredients
- Protein-flavor interactions that leads to loss of flavor
- There are various techniques and strategies that are available to reduce off-flavors in non-dairy frozen desserts and other plant based dairy products
- Flavor Masking is the most common technique and can be combined with other strategies to achieve a "winning" product for your consumers.

