Reformulating ice cream: from structure to sensory perception

Elke Scholten

Food Physics Group, Wageningen University The Netherlands

$\xrightarrow{\square}$

Structure

Role of structural elements

Serum phase: "glue" for structure hardness / scoopability smoothness

Structure

XRT: X-Ray Tomography

Fat
crystals

Homogenizing $\left(20^{\circ} \mathrm{C}\right)$
Aging ($4^{\circ} \mathrm{C}$)
Freezing $\left(-20^{\circ} \mathrm{C}\right)$

Overrun
Ice crystal size
Viscosity
Network in serum phase

Rheological properties Melting properties

Effect of structural elements?

Fat network-dominated structure

To vary degree of fat destabilization

- Same fat content: 10%
- Different surfactants
- Whey protein \rightarrow limited fat destabilization
- Tween $80 \rightarrow$ high fat destabilization

Ice crystal-dominated structure

To vary overrun

- 'Liquid nitrogen freezing'
- Different freezing times
- $8 \mathrm{~min}: 90 \%$ overrun
- 25 min: 30\% overrun

To vary ice crystal size

- Different freezing methods
- Batch freezer: $20 \mu \mathrm{~m}$
- 'Liquid nitrogen freezing': $50 \mu \mathrm{~m}$

Effect of structure on viscoelastic properties

Effect of overrun on viscoelastic properties

Low overrun: 30\%

Small air cells and a dense structure (thick lamellae)

High overrun (~90 \%)

(c) Air cells $(165 \mu \mathrm{~m})$

(d) Serum phase thickness $(69 \mu \mathrm{~m})$

High overrun leads to faster melting in early stage and delays melting at later stage

High overrun: 90\%

Large air cells and a loose structure (thin lamellae)

Effect of ice crystal size on viscoelastic properties

Ice crystal-dominated structure

Fat network-dominated structure

Ice crystal size has limited effect on the melting properties of both types of ice cream

Structure - Perception

Hardness:

- Ice content
- Serum viscosity
- Air cells
- Ice crystal size

Iciness/coarseness/ roughness:

- Ice crystal size
- Serum viscosity
- Fat destabilization

Smoothness:

- Ice crystal size
- Overrun
- Fat

Softness

- Ice crystal size
- Serum viscosity
- Overrun

Coldness

- Ice content
- Ice crystal size
- Serum phase viscosity
- Overrun
- Fat content

Molten state Creamy?
Flavor

Mouthcoating

- Fat content
- Fat destabilization (fat layer on the tongue)
- Thickeners (viscosity)

Creaminess

- Serum phase viscosity
- Fat content
- Overrun

Sensory perception

Table 1-Mean values of ice cream structural and physical attributes from instrumental analyses and the corresponding Tukey HSD test for significant differences at $P<0.05$.

Draw temperature $\left({ }^{\circ} \mathrm{C}\right)$	Emulsifier ${ }^{\text {a }}$ level (\%)	Mean ice crystal size $(\mu \mathrm{m})$ size ($\mu \mathrm{m}$)	Mean air cell size ($\mu \mathrm{m}$)	Fat destabilization (\%)	Drip-through rate ($\mathrm{g} / \mathrm{min}$)	Hardness (N)
-3	0	$69.6 \pm 1.2 \mathrm{a}$	$30.7 \pm 1.5 \mathrm{a}$	Of	$1.2 \pm 0.04 a$	$88.4 \pm 4.2 \mathrm{c}$
-3	0.1	$69.8 \pm 1.5 \mathrm{a}$	$30.6 \pm 1.1 \mathrm{a}$	$6.6 \pm 1.3 \mathrm{e}$	$1.0 \pm 0.03 \mathrm{c}$	$101.4 \pm 1.9 \mathrm{~b}$
-3	0.2	$69.4 \pm 1.0 \mathrm{a}$	$28.4 \pm 1.5 \mathrm{ab}$	$15.5 \pm 2.6 \mathrm{c}$	$0.68 \pm 0.08 \mathrm{~d}$	$112.9 \pm 5.4 \mathrm{a}$
-5	0	$40.1 \pm 1.3 \mathrm{~b}$	$26.5 \pm 1.3 \mathrm{bc}$	$7.6 \pm 1.9 \mathrm{e}$	$1.5 \pm 0.02 \mathrm{~b}$	32.3 ± 4.11
-5	0.1	$41.6 \pm 1.9 \mathrm{~b}$	$23.7 \pm 0.7 \mathrm{~d}$	$14.3 \pm 3.0 \mathrm{~d}$	$0.46 \pm 0.07 \mathrm{e}$	$62.7 \pm 4.7 \mathrm{e}$
-5	0.2	$42.2 \pm 1.7 \mathrm{~b}$	$24.1 \pm 1.3 \mathrm{~cd}$	$25.4 \pm 2.5 \mathrm{~b}$	$0.41 \pm 0.04 \mathrm{e}$	$72.7 \pm 6.6 \mathrm{~d}$
-7.5	0	$24.6 \pm 4.0 \mathrm{c}$	$24.7 \pm 1.4 \mathrm{~cd}$	22.3 ± 9.9	$1.1 \pm 0.09 \mathrm{c}$	$35.8 \pm 3.6 \mathrm{~g}$
-7.5	0.1	$20.3 \pm 1.1 \mathrm{c}$	$23.4 \pm 1.2 \mathrm{~d}$	$36.0 \pm 4.2 \mathrm{~b}$	$0.28 \pm 0.01 \mathrm{f}$	$47.3 \pm 2.8 \mathrm{f}$
-7.5	0.2	$20.1 \pm 1.6 \mathrm{c}$	$22.7 \pm 1.7 \mathrm{~d}$	$54.7 \pm 5.9 \mathrm{a}$	$0.21 \pm 0.01 \mathrm{f}$	$61.9 \pm 4.4 \mathrm{e}$

Table 2-Sensory panel scores on a 15 -point numeric scale for iciness, denseness, melt rate, and greasiness in ice creams with varying draw temperatures and emulsifier levels ($n=12$).

Draw temperature (${ }^{\circ} \mathrm{C}$)	Emulsifier level (\%) ${ }^{\text {a }}$	Sensory iciness	Sensory denseness	Sensory melt rate	Sensory greasiness
-3	0	$9.9 \pm 1.0 \mathrm{a}$	$5.7 \pm 0.9 \mathrm{bc}$	$5.0 \pm 1.0 \mathrm{ab}$	$2.4 \pm 0.8 \mathrm{e}$
-3	0.1	$8.5 \pm 0.9 \mathrm{~b}$	$6.0 \pm 0.9 b$	$4.5 \pm 1.3 \mathrm{bc}$	$3.0 \pm 0.9 \mathrm{de}$
-3	0.2	$6.4 \pm 0.9 \mathrm{c}$	$6.7 \pm 0.8 \mathrm{a}$	$5.0 \pm 1.1 \mathrm{~b}$	$3.6 \pm 0.7 \mathrm{~cd}$
-5	0	$4.5 \pm 0.8 \mathrm{~d}$	$4.9 \pm 0.7 \mathrm{~d}$	$4.2 \pm 1.1 \mathrm{c}$	$2.7 \pm 0.7 \mathrm{e}$
-5	0.1	$4.1 \pm 0.9 \mathrm{~d}$	$5.4 \pm 0.7 \mathrm{~cd}$	$4.4 \pm 1.0 \mathrm{bc}$	$4.3 \pm 1.0 \mathrm{bc}$
-5	0.2	$3.2 \pm 1.2 \mathrm{e}$	$6.1 \pm 1.1 \mathrm{~b}$	$4.6 \pm 0.8 \mathrm{bc}$	$4.9 \pm 1.0 \mathrm{~b}$
-7.5	0	2.7 ± 0.01	$4.2 \pm 0.9 \mathrm{e}$	$4.7 \pm 1.0 \mathrm{bc}$	$4.0 \pm 1.1 \mathrm{c}$
-7.5	0.1	$2.0 \pm 0.9 \mathrm{f}$	$4.9 \pm 0.8 \mathrm{~d}$	$4.9 \pm 1.3 \mathrm{~b}$	$4.9 \pm 0.9 \mathrm{ab}$
-7.5	0.2	$1.0 \pm 0.5 \mathrm{~g}$	$5.1 \pm 0.9 \mathrm{~cd}$	$5.6 \pm 0.9 \mathrm{a}$	$5.6 \pm 0.5 \mathrm{a}$

Amador et.al, Journal of Food Science, 2017, 82, 1851

Fat destabilization

- Decrease ice crystal size
- Decrease iciness

Fat destabilization

- Increase greasiness
\rightarrow Fat provides a lubrication layer

Sensory perception

Table 3-Ice cream structural attributes in ice creams collected at $-3{ }^{\circ} \mathrm{C}$ draw temperature with varying stabilizer levels.

Stabilizer ${ }^{\text {a }}$ level (\%)	Mix viscosity ${ }^{\text {b }}$ (Pa.s)	Ice crystal size ($\mu \mathrm{m}$)	$\begin{aligned} & \text { Air cell size } \\ & (\mu \mathrm{m}) \end{aligned}$	Fat destabilization (\%)	Drip-through rate ($\mathrm{g} / \mathrm{min}$)	Hardness (N)
0	$0.0229 \pm 0.001 \mathrm{c}$	$69.1 \pm 1.8 \mathrm{a}$	$32.8 \pm 0.9 \mathrm{a}$	0b	$1.28 \pm 0.042 \mathrm{a}$	$87.8 \pm 1.9 \mathrm{~b}$
0.2	0.204 ± 0.005 b	$68.9 \pm 1.3 \mathrm{a}$	$27.9 \pm 1.0 \mathrm{~b}$	0b	$1.05 \pm 0.043 \mathrm{~b}$	$88.9 \pm 3.2 \mathrm{~b}$
0.4	$0.906 \pm 0.003 \mathrm{a}$	$70.3 \pm 1.5 \mathrm{a}$	$25.2 \pm 1.1 \mathrm{c}$	$3.1 \pm 0.7 \mathrm{a}$	$0.93 \pm 0.042 \mathrm{c}$	$106.2 \pm 2.8 \mathrm{a}$
		Same size				

Iciness (particle detection)

- Related to mix viscosity (for same crystal size)
- Reduced with fat destabilization
\rightarrow Fat and thickeners can be used to mask ice crystals

Table 4-Sensory panel scores on a 15 -point numeric scale for iciness, denseness, melt rate, and greasiness for ice creams drawn at $-3{ }^{\circ} \mathrm{C}$ with varying stabilizer levels.

Stabilizer level (\%)	Sensory iciness	Sensory denseness	Sensory melt rate	Sensory greasiness
0	$10.1 \pm 0.8 \mathrm{a}$	$5.5 \pm 0.8 \mathrm{c}$	$4.6 \pm 0.6 \mathrm{~b}$	$2.0 \pm 1.1 \mathrm{c}$
0.2	$7.5 \pm 0.6 \mathrm{~b}$	$6.3 \pm 0.7 \mathrm{~b}$	$4.7 \pm 0.7 \mathrm{~b}$	$3.8 \pm 0.6 \mathrm{~b}$
0.4	$4.5 \pm 0.6 \mathrm{c}$	$7.3 \pm 0.8 \mathrm{a}$	$5.8 \pm 0.8 \mathrm{a}$	$5.2 \pm 0.6 \mathrm{a}$

Amador et. al, Journal of Food Science, 2017, 82, 1851

Sensory perception still not completely understood

Low fat ice cream?

- Higher melting rate
- No shape retention
- Lower lubrication
- ...
\downarrow
Polysaccharides:
Polysaccharide addition to increase viscosity

What is the role of the structure of polysaccharides and its specific rheological behavior?

Sensory perception of reformulated ice creams

Different thickeners

Fat reduced samples:

- High coldness
- High coarseness
- High hardness

Thickener addition

- Reduced coldness
- Reduced coarseness
\rightarrow Hardness increased

Table 6

Sensory characteristic of ice creams as affected by fat content, fat replacer type \& concentration.

Sample codes	Flavor	Coldness	Creaminess	Coarseness	Hardness	Acceptance
Full fat	$6.93{ }^{\text {d }} \pm 0.82$	$4.51{ }^{\text {abc }}+1.00$	$4.83{ }^{\text {de }} \pm 1.65$	$3.51^{\mathrm{ab}} \pm 0.51$	$4.32^{\text {ab }}+1.24$	$6.52^{\text {b }} \pm 1.03$
	$5.17^{\mathrm{c}} \pm 1.03$	$8.24{ }^{\text {e }} \pm 2.06$	$3.81{ }^{\text {bc }} \pm 0.98$	$8.13^{\mathrm{ab}} \pm 0.51$	$6.54{ }^{\text {c }} \pm 1.85$	$4.77^{\mathrm{a}} \pm 2.07$
	$4.33^{\mathrm{abc}} \pm 1.32$	$6.12^{\text {d }} \pm 1.32$	$2.80{ }^{\text {cd }} \pm 0.65$	$7.10^{\text {ef }} \pm 1.98$	$6.82{ }^{\text {cd }} \pm 1.36$	$5.51^{\mathrm{ab}} \pm 1.69$
	$4.54{ }^{\text {abc }} \pm 1.54$	$5.47{ }^{\text {cd }} \pm 1.02$	$4.41^{\mathrm{cd}} \pm 0.89$	$4.07{ }^{\text {bc }} \pm 0.68$	$8.45{ }^{\text {ef }} \pm 2.65$	$6.12^{\text {b }} \pm 2.36$
0.55 GG	$4.18{ }^{\text {abc }} \pm 1.78$	$5.42^{\text {cd }} \pm 0.79$	$5.27{ }^{\text {fgh }} \pm 1.84$	$4.92^{\text {cd }} \pm 0.63$	$8.83{ }^{\text {f }} \pm 2.03$	$5.34{ }^{\text {ab }} \pm 1.78$
Full fat	$6.51{ }^{\text {d }} \pm 1.23$	$4.53^{\text {abc }} \pm 0.94$	$5.33{ }^{\text {ef }} \pm 1.25$	$2.71^{\mathrm{a}} \pm 0.32$	$4.83{ }^{\text {b }} \pm 1.02$	$6.21^{\mathrm{b}} \pm 1.30$
	$3.37^{\mathrm{a}} \pm 1.25$	$7.47^{\mathrm{e}} \pm 1.23$	$3.29{ }^{\text {ab }} \pm 1.02$	$6.83{ }^{\mathrm{e}} \pm 1.57$	$5.83{ }^{\text {c }} \pm 1.06$	$5.35^{\mathrm{ab}} \pm 1.06$
	$4.83{ }^{\text {bc }} \pm 1.48$	$6.15{ }^{\text {d }} \pm 1.49$	$4.733^{\mathrm{cd}} \pm 1.65$	$4.51^{\mathrm{bc}} \pm 1.12$	$6.55^{\mathrm{c}} \pm 2.04$	$5.37{ }^{\text {ab }} \pm 1.02$
	$3.94{ }^{\text {abc }} \pm 0.08$	$4.82{ }^{\text {abc }} \pm 1.34$	$7.12^{\mathrm{h}} \pm 2.35$	$4.12^{\text {bc }} \pm 0.98$	$8.36{ }^{\text {ef }} \pm 2.07$	$6.14{ }^{\text {b }} \pm 2.03$
0.55 BSG	$3.44{ }^{\text {a }} \pm 0.48$	$4.02^{\mathrm{a}} \pm 1.39$	$6.71{ }^{\mathrm{fgh}} \pm 1.98$	$3.89{ }^{\text {bc }} \pm 0.83$	$7.53{ }^{\text {de }} \pm 1.05$	$5.34^{\text {ab }} \pm 1.78$
Full fat	$7.13^{\text {d }} \pm 0.35$	$4.13^{\text {ab }} \pm 1.48$	$4.92{ }^{\text {de }} \pm 1.05$	$3.95{ }^{\text {bc }} \pm 0.65$	$3.75{ }^{\mathrm{a}} \pm 0.88$	$6.24{ }^{\text {b }} \pm 1.36$
	$3.64{ }^{\text {ab }} \pm 0.12$	$7.17{ }^{\mathrm{e}} \pm 2.65$	$2.53^{\text {a }} \pm 0.85$	$7.63{ }^{\text {ef }} \pm 2.02$	$4.67^{\text {ab }} \pm 0.86$	$5.26{ }^{\text {ab }} \pm 0.78$
	$4.15{ }^{\text {abc }} \pm 0.87$	$5.27{ }^{\text {bcd }} \pm 1.25$	$3.97{ }^{\text {cd }} \pm 1.07$	$5.71{ }^{\text {d }} \pm 1.39$	$6.32^{\mathrm{c}} \pm 1.26$	$5.63{ }^{\text {ab }} \pm 1.08$
	$4.83{ }^{\text {bc }} \pm 0.63$	$4.93{ }^{\text {abc }} \pm 1.65$	$5.93{ }^{\text {fg }} \pm 1.65$	$4.72{ }^{\text {bcd }} \pm 1.07$	$6.95{ }^{\text {cd }} \pm 2.30$	$5.67{ }^{\text {ab }} \pm 1.07$
0.55 MGB	$4.04{ }^{\text {abc }} \pm 0.32$	$4.57^{\text {abc }} \pm 1.78$	$6.25^{\mathrm{gh}} \pm 1.16$	$4.27^{\text {bc }} \pm 1.06$	$7.61{ }^{\text {de }} \pm 2.01$	$5.64{ }^{\text {ab }} \pm 0.98$

Javidi et. al, Food Hydrocolloids, 2016, 52, 625

What is the role of the structure of polysaccharides and its specific rheological behavior?

Effect of polysaccharides in ice cream structure

Two types of polysaccharides (based on persistence length)

- Flexible: locust bean gum and guar gum (b)
- Rigid: xanthan gum and iota carrageenan (*)

Ice cream formulations of the studied samples (LBG: locust bean gum; GG: guar gum, XG: xanthan gum; IC: iota carrageenan).

Ingredients (\%)	10\% fat	1\% fat	LBG	GG	XG		IC	
Cream	30	3.0	2.98	2.99	2.99	2.99	2.99	2.98
Skimmed milk	56.2	81.9	81.47	81.67	81.75	81.59	81.75	81.47
Sucrose	13.8	15.0	14.90	14.94	14.96	14.93	14.96	14.90
Vanillin	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Polysaccharide (similar mix viscosity)			0.55	0.3	0.2	0	0.2	0
Polysaccharide (similar serum phase viscosity)			0.55	0.3		0.4	0	0.55

Effect of polysaccharides in ice cream structure

Two types of polysaccharides (based on persistence length)

- Flexible: locust bean gum and guar gum (B_{8})
- Rigid: xanthan gum and iota carrageenan (*)

Link between structure and sensory attributes?

Rate-All-That-Applies: 80 participants

Attributes	1\% fat	10\% fat	LBG055	GG03	XG02	IC02	XG04	IC055
Creaminess	$3.3 \pm 1.9^{\text {d }}$	$4.7 \pm 1.9^{\text {ab }}$	$5.2 \pm 1.8^{\text {a }}$	$4.3 \pm 2.0^{\text {bc }}$	$4.2 \pm 2.2^{\mathrm{bc}}$	$4.1 \pm 2.2^{\text {bc }}$	$3.8 \pm 2.0^{\text {cd }}$	$4.1 \pm 1.9^{\text {bc }}$
Softness	$3.1 \pm 1.8^{\text {cd }}$	$4.8 \pm 2.2^{\text {a }}$	$4.1 \pm 2.2^{\text {bc }}$	$4.5 \pm 1.9{ }^{\text {ab }}$	$3.5 \pm 2.1^{\text {bc }}$	$2.7 \pm 1.9^{\text {d }}$	$3.4 \pm 2.0^{\mathrm{bc}}$	$3.6 \pm 1.9^{\text {bc }}$
Coldness	$6.6 \pm 1.7^{\text {a }}$	$5.3 \pm 1.9^{\text {d }}$	$5.5 \pm 1.8^{\text {cd }}$	$5.2 \pm 1.5^{\text {d }}$	$5.9 \pm 1.9^{\text {bc }}$	$5.9 \pm 1.6^{\text {bc }}$	$6.3 \pm 1.5^{\text {ab }}$	$6.0 \pm 1.9^{\text {bc }}$
Grittiness	$5.1 \pm 2.3^{\text {a }}$	$3.0 \pm 2.3^{\text {c }}$	$3.6 \pm 2.3{ }^{\text {bc }}$	$3.5 \pm 2.3^{\text {bc }}$	$4.3 \pm 2.6^{\mathrm{ab}}$	$4.3 \pm 2.3{ }^{\text {ab }}$	$4.1 \pm 2.5^{\mathrm{ab}}$	$4.0 \pm 2.5^{\mathrm{ab}}$
Thickness	$3.3 \pm 1.9^{\text {c }}$	$4.2 \pm 1.9^{\text {b }}$	$4.6 \pm 1.9^{\text {a }}$	$4.0 \pm 1.9^{\text {bc }}$	3.8 ± 2.0^{c}	$4.5 \pm 2.3^{\mathrm{ab}}$	3.7 ± 2.0^{c}	$4.0 \pm 1.9^{\mathrm{bc}}$
Stickiness	$2.1 \pm 1.6^{\text {d }}$	$3.4 \pm 2.2{ }^{\text {ab }}$	$3.6 \pm 2.2^{\text {a }}$	$2.8 \pm 2.0^{\text {bc }}$	$2.6 \pm 2.1^{\text {cd }}$	$2.9 \pm 2.3^{\text {bc }}$	$2.4 \pm 2.0^{\text {cd }}$	$2.9 \pm 1.8^{\text {bc }}$
Mouth coating	$3.3 \pm 1.9^{\text {c }}$	$4.5 \pm 2.0^{\text {ab }}$	$4.9 \pm 2.0^{\text {a }}$	$4.2 \pm 2.1^{\text {ab }}$	$3.7 \pm 2.0^{\text {bc }}$	$4.0 \pm 2.1^{\text {bc }}$	$3.6 \pm 2.0^{\text {bc }}$	$4.0 \pm 1.9^{\text {bc }}$
Meltdown	$3.9 \pm 2.2^{\text {b }}$	$4.7 \pm 2.1^{\text {a }}$	$4.6 \pm 1.8^{\text {a }}$	$4.4 \pm 1.9{ }^{\text {ab }}$	$4.4 \pm 2.1{ }^{\text {ab }}$	$4.8 \pm 2.3^{\mathrm{a}}$	$4.5 \pm 2.2{ }^{\text {ab }}$	$4.6 \pm 2.0^{\text {a }}$
Off-flavor	$1.3 \pm 1.8^{\text {b }}$	$1.7 \pm 1.9^{\text {b }}$	$1.4 \pm 1.8^{\text {b }}$	$4.0 \pm 3.0^{\text {a }}$	$1.6 \pm 2.0^{\text {b }}$	$1.6 \pm 2.1^{\text {b }}$	$1.4 \pm 1.9^{\text {b }}$	$1.3 \pm 1.7^{\text {b }}$
Overall liking	$4.6 \pm 1.8^{\mathrm{ab}}$	$5.2 \pm 2.0^{\text {a }}$	$5.3 \pm 2.0^{\text {a }}$	$3.5 \pm 2.1^{\text {c }}$	$4.7 \pm 1.9^{\mathrm{ab}}$	$4.5 \pm 1.9^{\mathrm{ab}}$	$4.6 \pm 1.8^{\mathrm{ab}}$	$5.0 \pm 1.8^{\text {a }}$

Rigid polysaccharides provide higher grittiness and coldness

Flexible polysaccharides provide higher mouth coating, creaminess and stickiness

Development of low-fat ice cream: \rightarrow Use polysaccharides with a flexible structure

Low fat ice cream?

Full fat ice cream:	Reduction of fat	Low-fat ice cream:
- Fat content: 10-16\%		- Fat content: < 3%

Critical size: 45 micron

Can fat particles / fat network be replaced by other particles?

Protein particle size and morphology

Microstructure

Series	Sample code	Overrun (\%)	Air cell size ($\mu \mathrm{m}$)	Ice crystal size ($\mu \mathrm{m}$)
Reference	Fat-10	$32 \pm 2^{\text {f }}$	$35 \pm 13^{\text {a }}$	$50 \pm 14^{\text {a }}$
Homogenization series	H-4	$55 \pm 1^{\text {c }}$	$29 \pm 13^{\text {a }}$	$50 \pm 12^{\text {a }}$
	H150-4	$50 \pm 2^{\text {cd }}$	$26 \pm 11^{\text {a }}$	$52 \pm 11^{\text {a }}$
	H450-4	$44 \pm 3^{\text {de }}$	$33 \pm 16^{\text {a }}$	$51+15$
Fraction series	S-4	$71 \pm 4^{\text {a }}$	$28 \pm 16^{\text {a }}$	$47 \pm 13^{\text {a }}$
	S50-4	$63 \pm 2^{\text {b }}$	$33 \pm 7^{\text {a }}$	$54 \pm 15^{\text {a }}$
	IS-4	$43+{ }^{\text {e }}$	-30 $\pm 13^{\text {a }}$	$43 \pm 12^{\text {a }}$
Concentration series	H-4	$55 \pm 1^{\text {c }}$	$29 \pm 13^{\text {a }}$	$50 \pm 12^{\text {a }}$
	H450-5	52 ± 4^{c}	$30 \pm 16^{\text {a }}$	$48 \pm 13^{\text {a }}$
	H860-6	53 ± 4^{c}	$25 \pm 9^{\text {a }}$	$48 \pm 15^{\text {a }}$

Soluble proteins showed higher ability to adsorb at the air cell interface \rightarrow higher overrun

Air cell morphology

Textural and melting properties of ice cream

Textural properties Melting properties

Series	Sample code	Hardness (MPa)	Scooping energy ($\mathrm{N} \cdot \mathrm{mm}$)	Lag time (min)	Melting rate (\%/min)
Reference	Fat-10	$8.0 \pm 0.2^{\text {b }}$	$454 \pm 69^{\text {b }}$	$35 \pm 1.8^{\text {b }}$	$0.76 \pm 0.03^{\text {e }}$
Homogenization series	$\begin{gathered} \mathrm{H}-4 \\ \mathrm{H} 150-4 \\ \mathrm{H} 450-4 \end{gathered}$	$\begin{aligned} & 5.2 \pm 0.3^{\mathrm{cd}} \\ & 4.4 \pm 0.9^{\mathrm{de}} \\ & 3.6 \pm 0.4^{\mathrm{ef}} \end{aligned}$	$\begin{aligned} & 388 \pm 22^{\mathrm{bc}} \\ & 356 \pm 25^{\mathrm{c}} \\ & 309 \pm 18^{\mathrm{cd}} \end{aligned}$	$\begin{gathered} 28 \pm 0.2^{\mathrm{cd}} \\ 19 \pm 0.3^{\mathrm{ef}} \\ 16 \pm 0.4^{\mathrm{f}} \end{gathered}$	$\begin{aligned} & 2.16 \pm 0.04^{b} \\ & 2.17 \pm 0.01^{b} \\ & 2.11 \pm 0.03^{b} \end{aligned}$
Fraction series	$\begin{gathered} \mathrm{S}-4 \\ \mathrm{~S} 50-4 \end{gathered}$	$\begin{aligned} & 1.0 \pm 0.3^{g} \\ & 2.9 \pm 0.5^{f} \end{aligned}$	$\begin{aligned} & 108 \pm 24^{e} \\ & 257 \pm 15^{d} \end{aligned}$	$\begin{aligned} & 20 \pm 0.9^{\mathrm{ef}} \\ & 33 \pm 0.5^{\mathrm{bc}} \end{aligned}$	$\begin{aligned} & 2.72 \pm 0.01^{\mathrm{a}} \\ & 1.86 \pm 0.07^{\mathrm{a}} \end{aligned}$
	IS-4	$9.5 \pm 0.4^{\text {a }}$	$572 \pm 43^{\text {a }}$	$48 \pm 3.3^{\text {a }}$	$1.07 \pm 0.10^{\text {d }}$
Concentration series	$\begin{gathered} \mathrm{H}-4 \\ \mathrm{H} 450-5 \\ \mathrm{H} 860-6 \end{gathered}$	$\begin{aligned} & 5.2 \pm 0.3^{\mathrm{cd}} \\ & 5.6 \pm 0.2^{\mathrm{cd}} \\ & 5.3 \pm 0.2^{\mathrm{cd}} \end{aligned}$	$\begin{gathered} 388 \pm 22^{\mathrm{bc}} \\ 395 \pm 33^{\mathrm{bc}} \\ 359 \pm 65^{\mathrm{c}} \end{gathered}$	$\begin{gathered} 28 \pm 0.2^{\mathrm{cd}} \\ 23 \pm 0.3^{\mathrm{de}} \\ 18 \pm 0.1^{\mathrm{ef}} \end{gathered}$	$\begin{aligned} & 2.16 \pm 0.04^{\mathrm{b}} \\ & 2.22 \pm 0.03^{\mathrm{b}} \\ & 2.25 \pm 0.05^{\mathrm{b}} \end{aligned}$

Small soluble protein particles lead to lower hardness and higher scoopability due to their contribution to overrun

Insoluble particles contribute more to the melting resistance due to their positive effect on mix viscosity and their greater ability in network formation

Texture - Sensory

Rheological properties	Variables	Creaminess	Softness	Coldness	Grittiness	Denseness	Mouth coating	Melting
	Hardness	0.848	-0.197	-0.869	-0.717	0.855	0.838	0.61
	Scooping energy	0.800	-0.319	-0.830	-0.742	0.869	0.814	0.681
Melting properties	Lag time	0.541	-0.139	-0.431	-0.272	0.512	0.452	0.31:
	Melting rate	-0.761	0.467	0.719	0.656	-0.798	-0.746	-0.69
	$\mathrm{G}^{\prime}-15$	0.856	-0.048	-0.846	-0.699	0.827	0.822	0.52،
	SZII	-0.735	-0.235	0.619	0.449	-0.658	-0.662	-0.30
Lubrication properties	G_{5}	0.682	-0.121	-0.656	-0.415	0.587	0.624	0.38
	FCB	-0.885	0.286	0.882	0.940	-0.913	-0.926	-0.76
	SMR	0.612	-0.027	-0.610	-0.664	0.678	0.647	0.49

Ice cream with medium-sized particles (4 micron) have properties similar to fat sample

Role of fat and protein on aroma release

code in water	code in saliva	fat type	fat level	Protein level	
WAH1	SAH1	A	High	1	
WAH2	SAH2	A	High	2	-
WBH1	SBH1	B	High	1	-
WBH2	SBH2	B	High	2	1
WAL1	SAL1	A	Low	1	
WAL2	SAL2	A	Low	2	1
WBL1	SBL1	B	Low	1	
WBL2	SBL2	B	Low	2	

14 aroma compounds with different lop P values:
Acetoin, 2,5-dimethylpyrazine, vanillin, 2-methoxy phenol, benzaldehyde, phenyl ethyl alcohol, 2-ethyl-3,5-dimethylpyrazine, 2-methoxy-4-methylphenol, hexanal, p-anisaldehyde, ethyl butyrate, butyl propionate, cis-3-hexenyl acetate, ethyl octanoate.

Ayed et. al, Food Chemistry 2018, 267, 132

Role of fat and protein content on aroma release

Ice cream with low fat level release more
hydrophobic compounds than high fat level

Low fat

hydrophobic compounds less released for higher protein content:

Dynamic perception

Temporal dominance of sensation (TDS)

- Presentation of all attributes simultaneously
- Selection of dominant attribute until another attribute becomes dominant (attracts most attention)

Instructions
The subject puts the product into his mouth and clicks on "START" ($\mathrm{t}=0$)

Then, he/she chooses what attribute is dominant and scores its perceived intensity and so on...
...until perception ends and clicks "STOP"

Computer screen

Computer recording

Dynamic perception

Dynamic sensory perception

6 ice creams:

- Milk (M)
- Cream (C)
- Egg (E)
- Hydrocolloids (H)

6 sensory attributes:

Table 1

Formulations of the mixes used for ice cream manufacture. Milk (M), diary cream (C), egg yolk (E), hydrocolloids (H) and sugar (S).

Sample	$\mathrm{M}(\% \mathrm{w} / \mathrm{w})$	$\mathrm{C}(\% \mathrm{w} / \mathrm{w})$	$\mathrm{E}(\% \mathrm{w} / \mathrm{w})$	$\mathrm{H}(\% \mathrm{w} / \mathrm{w})$	$\mathrm{S}(\% \mathrm{w} / \mathrm{w})$
MECH	36	36	14	0.5	13.5
MEH	72	0	14	0.5	13.5
MCE	36.5	36	14	0	13.5
MCH	50	36	0	0.5	13.5
MH	86	0	0	0.5	13.5
M	86.5	0	0	0	13.5

iciness
coldness
creaminess
roughness
gumminess
mouth
coating

Dynamic sensory perception

6 ice creams:

- Milk (M)
- Cream (C)
- Egg (E)
- Hydrocolloids (H)

Mouthcoating

Samples with:

- Cream
- Hydrocolloids

Cream / hydrocolloids

- High gumminess

Creaminess

- Difficult to asses
- Perceived later
\rightarrow The ones that were liked most had early creaminess

Varela et. al, Food Hydrocolloids

Milk (MH)

- Also icy
- Masks coldness
\rightarrow Hydrocolloids can mask early sensation of icy and cold

Milk (M)

- High Iciness in beginning
- High coldness
(related to large ice crystals)
iciness
coldness
creaminess
roughness
gumminess
mouth
coating

Effect of eating behaviour?

Does the way people consume ice cream influence perception?

Tonguers: move the jaw in a horizontal plane (from left to right)
Chewers: move the jaw in a vertical direction (up and down)
Melters: no clear movement
Suckers: can not be distinguished from melters (only self-reporting)

Oral behaviour classification	Self-reporting (\%)	Video recording (\%)
Combined behaviour	27.2	39.8
Tonguers	49.5	36.9
Chewers	13.6	21.4
Melters	6.8	1.9
Suckers	2.9	0.0

Almost 40\% use their
tongue

Doyenette et. al, Food Quality and
preference 2019, 78, 103721

Effect of eating behaviour?

Does the way people consume ice cream influence perception?

Two different ice creams:

- Soft
- Hard

Ice cream hardness level	Consumption time (s)	Oral behaviour	Consumption time (s)
Low	$20.6 \pm 1.0^{\mathrm{a}}$	Chewing	
High	Natural Melting	$17.1 \pm 0.8^{\mathrm{A}}$ $22.6 \pm 1.4^{\mathrm{B}}$	$29.1 \pm 1.3^{\mathrm{b}}$

Influence of eating procedure on perception?

Three protocols:

- Natural
- Melting (without any tongue movements)
- Chewing (masticating between the teeth)

Effect of eating behaviour?

Hard ice creams

- Coldness - Smoothness - Firmness - Fruity aroma - Chewiness - Iciness - Sweetness

coldness becomes more dominant
coldness dominant independent on eating habit

Firmness and smoothness becomes more dominant (more contact with palate)

Texture perceived early since no tongue movements are needed

Taste and aroma (fruily and sweet) in later stage as some tongue movement is required

Effect of eating behaviour?

Soft ice creams

- Coldness - Smoothness - Firmness - Fruity aroma - Chewiness - Iciness - Sweetness

LH Chewing

LH Natural

Fruity perceived earlier and more dominant

- larger surface area due to chewing
- Perceived earlier as aroma is released earlier in softer products

Smoothness becomes more dominant
coldness becomes dominant only in second half

Sweetness less dominant

Effect of eating environment?

Effect of eating environment?

Xu et. al, Food Quality and preference
2019, 77, 191

Thank you for your attention!

Elke.scholten@wur.nl
Physics and Physical Chemistry of Foods

