

Microstructure and Flavor Release; some novel approaches

S.A. Rankin, Ph.D. Oct, 2023 Frozen Dessert Center Conference

Relevance? The release of flavor compounds from food, and their delivery to the receptors located in the mouth and nose (Fig. 1), is acknowledged as one of the <u>key factors determining the perceived flavor quality</u> of foods. Salles et al, 2011

Flavor defined

The flavor perception we derive from eating a food product is determined by the <u>nature and quantity</u> of the <u>flavor components</u>, the <u>availability</u> of these components to the sensory system as a function of time, and the mechanisms and <u>strategies of perception</u> and scaling which determine the flavor quality and intensity over time

Overbosch et at., 1991

<section-header><u<section-header>

Variation in finished products survey United States commercial ice cream products . . .

Components	Mean and standard error	Range
Mean ice crystal size (µm)	48.1 ± 2.3	26.3-67.1
Mean air cell size (µm)	29.9 ± 1.5	17.1-39.5
Percent total fat (%)	8.6 ± 1.0	0.01-14.3
Percent fat destabilization (%)	21.9 ± 3.88	2.60-55.3
Overrun (%)	75.0 ± 6.5	21.7-119
Density of ice cream (g/L)	$649 \pm .03$	509-904
Density of ice cream mix (kg/L)	$1.10 \pm .01$	1.07-1.16
Drip-through rate (g/min)	1.07 ± 0.15	0.13-1.88
Total solids (%)	38.3 ± 0.67	31.1-42.6

Table 3–Mean values of compositional and structural analyses and the corresponding Student's t-test of significant differences at P < 0.05 for the 18 samples analyzed.

Sample code	Mean ice crystal size (µm)	Mean air cell size (µm)	Total fat (%)	Fat destabilization (%)	Overrun (%)	Ice cream mix density (kg/L)*	Drip-through rate (g/min)	Total Solids (%)
106	46.3 ± 5.0 ^{cde}	30.4 ± 2.0 ^{bcde}	10.3 ± 0.1^{def}	15.1 ± 1.7 ^{gh}	95.1 ± 1.1 ^{bc}	1.10 ^{ef}	1.20 ± 0.14^{d}	40.2 ± 0.6^{ba}
159	26.3 ± 1.6^{h}	22.2 ± 1.1^{fgh}	0.1 ± 0.1^{j}	11.0 ± 4.1^{hi}	96.0 ± 2.9^{b}	1.16 ^a	1.85 ± 0.11^{a}	36.9 ± 0.2^{fg}
171	53.0 ± 2.3^{b}	30.1 ± 4.1 ^{cde}	13.1 ± 0.3^{b}	20.4 ± 1.6^{fg}	67.0 ± 2.4^{g}	1.098	$0.33 \pm 0.05^{\rm gh}$	39.1 ± 0.3
215	53.5 ± 1.3^{b}	24.6 ± 0.5^{defg}	9.0 ± 0.5^{g}	7.8 ± 1.0^{ijk}	91.8 ± 2.6^{cd}	1.098	$0.67 \pm 0.06^{\circ}$	36.4 ± 0.1^{g}
286	$40.0 \pm 5.1^{\text{fg}}$	28.0 ± 5.2^{defg}	0.2 ± 0.1^{j}	26.0 ± 2.7^{ef}	68.4 ± 2.7^{g}	1.16 ^a	1.72 ± 0.13^{ab}	34.6 ± 0.1^{h}
293	50.8 ± 1.4^{bcd}	26.4 ± 1.3^{efg}	9.4 ± 0.4^{fg}	55.3 ± 5.9^{a}	83.4 ± 4.3^{ef}	1.13 ^b	0.24 ± 0.04^{gh}	42.6 ± 3.2^{a}
313	61.9 ± 4.9^{a}	27.1 ± 2.8^{efg}	$14.3 \pm 0.6^{\circ}$	6.0 ± 1.6^{ijk}	26.9 ± 1.1^{i}	1.098	1.40 ± 0.32^{cd}	40.9 ± 0.4^{b}
423	51.7 ± 1.9^{bc}	36.5 ± 1.7^{abc}	7.6 ± 1.0^{h}	2.6 ± 0.2^{k}	51.0 ± 1.5^{h}	1.098	1.69 ± 0.08^{ab}	35.9 ± 0.2^{gl}
472	41.3 ± 1.1^{efg}	38.2 ± 1.7^{a}	5.7 ± 0.4^{i}	30.6 ± 1.0^{de}	119 ± 4.0^{a}	1.12 ^c	1.26 ± 0.09^{d}	$35.8 \pm 0.3g$
559	42.8 ± 0.6^{efg}	37.4 ± 3.7^{2}	*11.5 ^c	45.0 ± 3.4^{bc}	21.7 ± 1.1^{j}	1.10 ^e	0.20 ± 0.20^{h}	40.7 ± 0.6^{b}
603	53.6 ± 1.2^{b}	26.0 ± 1.2^{efg}	11.0 ± 0.1^{cd}	21.9 ± 7.5^{f}	80.3 ± 1.9^{f}	1.11 ^{ef}	0.26 ± 0.03^{gh}	38.6 ± 0.2^{d}
638	40.9 ± 2.6 ^{egh}	36.6 ± 2.3^{ab}	9.9 ± 0.2^{efg}	5.0 ± 0.8^{ik}	97.5 ± 1.7^{b}	1.11 ^d	1.72 ± 0.07^{ab}	40.9 ± 0.4^{b}
652	45.8 ± 3.2 ^{de}	21.9 ± 1.8^{gh}	10.8 ± 1.7 ^{cde}	7.9 ± 2.3^{ijk}	72.2 ± 2.2^{g}	1.10 ^e	0.44 ± 0.05^{fg}	39.2 ± 0.1^{ct}
727	43.9 ± 2.6 ^{ef}	28.5 ± 1.6^{def}	5.5 ± 0.2^{i}	32.3 ± 2.8^{d}	89.6 ± 3.2^{d}	1.11 ^c	$0.64 \pm 0.07^{\rm ef}$	37.8 ± 0.3et
824	45.7 ± 2.9 ^{de}	34.2 ± 4.9^{abcd}	5.9 ± 0.2^{i}	47.0 ± 1.7^{b}	95.4 ± 0.7^{bc}	1.09^{f}	$0.89 \pm 0.16^{\circ}$	*38.0 ^{def}
880	67.1 ± 3.9^{a}	39.5 ± 1.8^{8}	14.0 ± 0.6^{ab}	$40.4 \pm 7.3^{\circ}$	23.7 ± 0.6^{ij}	1.10 ^{ef}	0.13 ± 0.02^{h}	40.6 ± 0.2^{b}
913	66.3 ± 3.1^{a}	30.1 ± 3.6^{cde}	5.2 ± 0.6^{i}	10.0 ± 0.6^{hij}	85.7 ± 2.1°	1.07 ^h	1.53 ± 0.07^{bc}	31.1 ± 0.1^{i}
957	37.9 ± 2.5^{g}	17.1 ± 1.6^{h}	$11.5 \pm 0.5^{\circ}$	9.0 ± 3.6^{ij}	83.3 ± 1.6^{ef}	1.11 ^d	1.86 ± 0.31^{a}	41.0 ± 0.3^{b}

Warren and Hartel, 2014

Table 2–Compositional and		
Components	Range	
Mean ice crystal size (μ m)	26.3-67.1	
Mean air cell size (μ m)	17.1-39.5	
Percent total fat (%)	0.01-14.3	
Percent fat destabilization (%)	2.60-55.3	
Overrun (%)	21.7-119	
Density of ice cream (g/L)	509-904	
Density of ice cream mix (kg/L)	1.07 - 1.16	
Drip-through rate (g/min)	0.13-1.88	
Total solids (%)	31.1-42.6	

<figure><figure><figure><figure><figure><figure><figure>

				oma recogniti
	М. Такана	an at al		
Tal	ble 2. Odor-Active (FD \geq 25) Volat		ured Vanilla Beans	
Odorant ^a	Odor quality ^b	RI	FD factor	Identification mode ^c
Acetic acid	acidic, sour	1430	625	MS, RI, GC-O
2-Methylbutanoic acid	buttery, cheese-like	1691	25	MS, RI, GC-O
3-Methylbutanoic acid	buttery, cheese-like	1693	25	MS, RI, GC-O
3-Methylnonane-2,4-dioned	floral, medicinal	1739	25	RI, GC-O
(2E,4E)-deca-2,4-dienald	oily	1816	25	RI, GC-O
β-Damascenone	raisin-like, fruity	1826	25	MS, RI, GC-O
Guaiacol	phenolic, medicinal	1863	125	MS, RI, GC-O
Anisaldehyde	anise-like, raspberry-like	2052	1953125	MS, RI, GC-O
Methyl (E)-cinnamate	fruity, cinnamon-like	2083	125	MS, RI, GC-O
p-Cresol	fecal	2084	125	MS, RI, GC-O
Anisyl acetate	floral, raisin-like	2132	15625	MS, RI, GC-O
Ethyl (E)-cinnamate	cinnamon-like, fruity	2145	125	MS, RI, GC-O
Unknown	cooked, meaty	2167	25	GC-O
Eugenol	clove-like, spicy	2169	125	MS, RI, GC-O
4-Vinylguaiacol	phenolic, spicy	2207	25	MS, RI, GC-O
Anisyl alcohol	floral, anise-like	2276	390625	MS, RI, GC-O
Phenylacetic acid	buttery, honey-like	2512	125	MS, RI, GC-O
Vanillin	sweet, vanilla-like	2604	1953125	MS, RI, GC-O
3-Phenylpropanoic acid	metallic, buttery	2672	125	MS, RI, GC-O
Isovanillin	phenolic, medicinal	2718	125	MS, RI, GC-O

Flavor Release

...is the process whereby flavor molecules move out of a particular molecular environment within a food and into the surrounding saliva or vapor phase (McNulty, 1987; Overbosch et al., 1991)

The most important aspect of ... is that aroma molecules leave the bolus and arrive at the olfactory epithelium in the nose where they can be sensed (R. Linforth, A. Taylor, in Flavour in Food, 2006).

Flavor release (or lack thereof) is also the basis of some masking agents/technologies that prevent or slow the release of aroma compounds thus decreasing their perception (Rankin, 2023)

Thermodynamic and kinetic parameters control the flavour release from foods. They depend not only on the composition but also on the physical state of the matrix: liquid systems (water or lipids) are relatively simple to study and are useful to understand physical partitioning and release; when moving to viscous or solid systems, more parameters are involved such as diffusion; **real foods are often even more complex**, with **heterogeneous composition and structure** and must be studied at different levels (Voilley and Souchon, 2006)

Mass Transfer

...operations are concerned with the transfer of matter from one stream to another. In many processes a change in phase may also be involved.

Operation	Material transferred	Phase change	Examples and comments
Dehydration	Water	From liquid or solid to vapour	Many drying methods are available. Quality is improved by minimizing the loss of volatile components
Solvent extraction	Oil	From solid matrix to organic liquid	Extraction of oils and fats from animal plant or microbial sources
Leaching Sulphiting	Soluble components Sulphur dioxide	From solid matrix to aqueous solvent From gas to solid or liquid media	Tea, coffee, sugar extraction; plant protein Sulphiting may also be done using solutions of sodium bisulphite or metabisulphite
Smoking	Phenolic components	From vapour to solid matrix	Preservation of foods by use of antimicrobial agents
Distillation	Alcohol and other volatile components	From liquid to vapour	Recovery of alcohol from a fermentation broth
Packaging	Gases and vapours	From the external environment into the package	Prevention of microbial and oxidation reactions
Membrane processing	Water, and dissolved solutes	From liquid to liquid through a semipermeable membrane	Reverse osmosis for concentrating liquids. Ultrafiltration for concentrating proteins
Oxygen transfer	Oxygen	From gas to liquid	Aerobic fermentation processes in which oxygen is consumed from the solution by micro- organisms
Ion exchange	Metal ions, proteins	From solution to a solid phase	Elution involves the reversal of the adsorption process

Lewis, 1996

Comparison of Dynamic	curry nercuseu qu	unities of Flatto	4.8, and 00 0, 1		in emulsions			
			Liquid	d lipids ^b	in emuisions	Solid	lipids ^b	
	Water ^c	Triacetin	Tributyrin	Miglyold	Butter oil ^d	Trimyristind	Tripalmitin	
Diacetyl	$1.22^{a} \pm 0.06$	$2.02^{b} \pm 0.01$	$2.28^{\circ} \pm 0.14$	$1.50^{d} \pm 0.11$	$5.95^{e} \pm 0.07$	$2.26^{\circ} \pm 0.17$	$1.75^{i} \pm 0.15$	
Isobutyl acetate	$0.81^{a} \pm 0.01$	$0.70^{b} \pm 0.03$	$0.20^{\circ} \pm 0.00$	$0.25^{d} \pm 0.00$	$0.33^{e} \pm 0.02$	$0.31^{e} \pm 0.01$	$0.31^{e} \pm 0.03$	
Ethyl 2-methylbutyrate	$1.22^{a} \pm 0.01$	$0.91^{b} \pm 0.04$	$0.15^{\circ} \pm 0.01$	$0.17^{c} \pm 0.01$	$0.25^{d} \pm 0.01$	0.21 ^{c,d} ± 0.01	$0.35^{e} \pm 0.04$	
(Z)-3-Hexenyl acetate	$6.22^{a} \pm 0.22$	$3.25^{b} \pm 0.15$	$0.33^{\circ} \pm 0.02$	$0.48^{\circ} \pm 0.01$	$0.69^{d} \pm 0.01$	$0.68^{d} \pm 0.02$	$1.48^{e} \pm 0.11$	
2,3-Dimethylpyrazine	$0.28^{3} \pm 0.00$	$0.23^{b} \pm 0.03$	$0.30^{a,c} \pm 0.05$	$0.27^{a,b} \pm 0.01$	$0.31^{a,c} \pm 0.00$	$0.34^{\circ} \pm 0.01$	$0.24^{b} \pm 0.00$	
(Z)-3-Hexenol	$0.74^{a,b} \pm 0.01$	$0.73^{a} \pm 0.06$	$0.58^{\circ} \pm 0.07$	$0.60^{\circ} \pm 0.00$	$0.80^{b,d} \pm 0.01$	$0.82^{d} \pm 0.01$	$0.61^{\circ} \pm 0.01$	
2-Isobutylthiazole	$4.50^{3} \pm 0.05$	$2.80^{b} \pm 0.21$	$0.58^{\circ} \pm 0.05$	$0.67^{\circ} \pm 0.00$	$0.95^{d} \pm 0.02$	$0.93^{d} \pm 0.03$	$1.93^{e} \pm 0.14$	
Furfuryl acetate	$1.23^{a} \pm 0.07$	$0.98^{\rm h} \pm 0.10$	$0.35^{\circ} \pm 0.05$	$0.52^{d} \pm 0.01$	$0.71^{e} \pm 0.03$	$0.69^{\circ} \pm 0.02$	$0.79^{\circ} \pm 0.05$	
Linalool	$1.98^{\circ} \pm 0.10$	$1.13^{b} \pm 0.15$	$0.15^{\circ} \pm 0.02$	$0.18^{c} \pm 0.00$	$0.26^{\circ} \pm 0.01$	$0.27^{\circ} \pm 0.01$	$0.42^{d} \pm 0.01$	
2-Pentylpyridine	$2.36^{\circ} \pm 0.14$	$0.75^{b} \pm 0.28$	$0.21^{\circ} \pm 0.06$	$0.24^{\circ} \pm 0.09$	$0.22^{\circ} \pm 0.03$	$0.19^{\circ} \pm 0.02$	$0.30^{\circ} \pm 0.04$	
D-Carvone	$1.31^{a} \pm 0.01$	$0.64^{b} \pm 0.13$	$0.11^{c} \pm 0.02$	$0.14^{c} \pm 0.01$	$0.17^{\circ} \pm 0.01$	$0.18^{\circ} \pm 0.01$	$0.46^{d} \pm 0.04$	
β-Damascenone	$4.79^3 \pm 0.43$	$0.89^{\rm b} \pm 0.28$	$0.20^{\circ} \pm 0.06$	$0.13^{\circ} \pm 0.04$	$0.11^{c} \pm 0.01$	$0.13^{\circ} \pm 0.02$	$0.34^{\circ} \pm 004$	
γ-Nonalactone	$0.11^3 \pm 0.02$	$0.07^{b} \pm 0.03$	$0.05^{b} \pm 0.01$	$0.04^{b} \pm 0.00$	$0.05^{\rm b} \pm 0.00$	$0.07^{b} \pm 0.01$	$0.05^{b} \pm 0.01$	
CV ^e (%)	4.2	15.1	13.8	8.3	4.7	6.0	8.0	
LogP ⁱ		0.36	3.31	10.78		18.0	20.9	
Molarity (mol L ⁻¹)		0.27	0.17	0.09	0.06	0.06	0.05	

Effect of lipid type, phase

TABLE 1

Comparison of Dynamically Released Quantities of Flavor (µg, after 30 s) from Emulsions Comprising Different Lipid Phases^a

	Water ^c	Lipids used in emulsions							
		100	Liquid	Solid lipids ^b					
		Triacetin	Tributyrin	Miglyold	Butter oil ^d	Trimyristin ^d	Tripalmitin		
Diacetyl	$1.22^{a} \pm 0.06$	$2.02^{b} \pm 0.01$	$2.28^{\rm c}\pm 0.14$	$1.50^{\rm d} \pm 0.11$	$5.95^{\mathrm{e}} \pm 0.07$	$2.26^{\rm c}\pm0.17$	$1.75^{\circ} \pm 0.15$		

Flavor Impact compound: not so distinct aroma

Odorant ^a	Odor quality ^b	RI	FD factor		Identification mode ^c
Acetic acid	acidic, sour	1430	625	Î.	MS, RI, GC-O
2-Methylbutanoic acid	buttery, cheese-like	1691	25	"↓	MS, RI, GC-O
3-Methylbutanoic acid	buttery, cheese-like	1693	25	1 a 1	MS, RI, GC-O
3-Methylnonane-2,4-dioned	floral, medicinal	1739	25		RI, GC-O
(2E,4E)-deca-2,4-dienald	oily	1816	25	1	RI, GC-O
β-Damascenone	raisin-like, fruity	1826	25		MS, RI, GC-O
Guaiacol	phenolic, medicinal	1863	125		MS, RI, GC-O
Anisaldehyde	anise-like, raspberry-like	2052	1953125		MS, RI, GC-O
Methyl (E)-cinnamate	fruity, cinnamon-like	2083	125		MS, RI, GC-O
p-Cresol	fecal	2084	125	1	MS, RI, GC-O
Anisyl acetate	floral, raisin-like	2132	15625		MS, RI, GC-O
Ethyl (E)-cinnamate	cinnamon-like, fruity	2145	125	1	MS, RI, GC-O
Unknown	cooked, meaty	2167	25	•	GC-O
Eugenol	clove-like, spicy	2169	125	\Leftrightarrow	MS, RI, GC-O
4-Vinylguaiacol	phenolic, spicy	2207	25		MS, RI, GC-O
Anisyl alcohol	floral, anise-like	2276	390625	Î	MS, RI, GC-O
Phenylacetic acid	buttery, honey-like	2512	125		MS, RI, GC-O
Vanillin	sweet, vanilla-like	2604	1953125	l	MS, RI, GC-O
3-Phenylpropanoic acid	metallic, buttery	2672	125		MS, RI, GC-O
Isovanillin	phenolic, medicinal	2718	125		MS, RI, GC-O

Vanilla: complex chemistry, diffusivity, mass transfer, matrix/composition...

Alter matrix to improve flavor....?

No consistent and complete set of data is available in the literature for comprehensive model validation. In particular, the reported experimental data lack information on the temperature dependence of the diffusion coefficient in the polymer membrane and on the average number of unit cell in the foam layer. This data is critically important for the development of reliable foam diffusion models.

Pilon, 2000; Georgia Institute of Technology,

A few words of caution

- These are new approaches, lack of confidence
- Principles are not universally applicable
- Re-think how we approach food flavor
- Are they really novel?

Practical principle #3

Flavor preference is fluid

55

"We like what we eat more than we eat what we like" -Kurt Lewin

10/26/23

Microstructure and Flavor Release; some novel approaches

S.A. Rankin, Ph.D. Oct, 2023 Frozen Dessert Center Conference