

1
 KETO, VEGAN, DAIRY FREE, \& MORE

Relevance?

Relevance?

https://www.taste-institute.com/en/resources/blog/importance-of-taste-in-product-development

3

Relevance?

The release of flavor compounds from food, and their delivery to the receptors located in the mouth and nose (Fig. 1), is acknowledged as one of the key factors determining the perceived flavor quality of foods.

Salles et al, 2011

5

Flavor defined

The flavor perception we derive from eating a food product is determined by the nature and quantity of the flavor components, the availability of these components to the sensory system as a function of time, and the mechanisms and strategies of perception and scaling which determine the flavor quality and intensity over time

Overbosch et at., 1991

7

Strong sense of convention

Flavor

- Vanilla
- Chocolate
- Strawberry
- Dairy
- Texture/mouthfeel
- Melt
- Composition
- Color
- Etc.

IC structure is complex, so are flavors - this is trouble
 Some practical principles -> novel approaches

9

Complex Ingredients

Ice Cream And Frozen Dairy Dessert Application Monograph, USDEC

ingredient	PRoten (\%)	Lactose (\%)	FAT (\%)	ASH (\%)	moisture (\%)	application advantage
Stem Ma Fonster	341037	49 tos2	0101	8109	364	Stable source of fairy solifs cost-eflective
Ivasorated Conderaed Skim Mal	,	"	*	1	80	Cat eliction turce of dey shat
Mat Protein Concentrate	42 2085	31050	1602	3500	15	
Ma Procemindee	30	05	$\stackrel{7}{ }$	${ }_{8} 8$	3	Searce of tegit cencetsuted mit setten
Cmen*	A0to 85	05	1		5	Conce-fyated casein peobein with y arious hunctiondipesperties
Seeewey fonser	\bigcirc	570	1	*	*	Contethection surce of mas rotds
Whey frotein Concentrate	345086	10 m 50	4106	3tor	4	
Way froten boilte	> 70	<	81	3	${ }^{4}$	Concertroted souke el tirem finctions metritionsu protein
Wher nermese	2106	Totess	\rightarrow	10	4	Cont Elictive surce of mix toth
Letione	$\leqslant 1$	95.	-0,	$\times 05$	5	Seurce of mik mugar Contr butestotal solids and lresteng poirt
wer Proten thougnelppd Concomtuth	>50	1705	>t2	88	- 6	Source el protein and exia phosphel pid for mulfetion and loming

11

Complex processing

Fig. 19.10
Ice cream plant for production of $5.000-10.000 \mathrm{l} / \mathrm{h}$ of various types of ice cream.

1. Mix preparation
2. Ageing tanks
3. Continuous freezers
4. Bulk filling
5. Cone filling
6. Moulding
7. Extrusion
8. Cartoning
n ct......

Complex Material

FIGURE 2 Schematic illustration of typical ice cream microstructure

United States commercial

Table 2-Compositional and :

Components	Range
Mean ice crystal size $(\mu \mathrm{m})$	$26.3-67.1$
Mean air cell size $(\mu \mathrm{m})$	$17.1-39.5$
Percent total fat $(\%)$	$0.01-14.3$
Percent fat destabilization (\%)	$2.60-55.3$
Overrun (\%)	$21.7-119$
Density of ice cream $(\mathrm{g} / \mathrm{L})$	$509-904$
Density of ice cream mix $(\mathrm{kg} / \mathrm{L})$	$1.07-1.16$
Drip-through rate $(\mathrm{g} / \mathrm{min})$	$0.13-1.88$
Total solids $(\%)$	$31.1-42.6$

16

17

19

21

Chemical basis of flavor (aroma)

https://www.chromatographyonline.com/view/flavour-and-fragrance-analysis-wondrous-vanilla

What do we know, don't know at this point?

- Compound ID, e.g., 4-hydroxy-3-methoxybenzaldehyde
- Quantity, e.g., 100 mg/kg

- Is there enough to make an impact?

23

https://odourobservatory.org/measuring-odour/gas-chromatography-olfactometry/

Human detector

Gas chromatograph
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/olfactometry

25

Serial Dilution

27

Flavor Impact compound: distinct aroma recognition

Table 2. Odor-Active (FD $\geqq 25$) Volatiles in Tahitian Cured Vanilla Beans

Odorant	Odor quality ${ }^{\text {b }}$	RI	FD factor	Identification mode ${ }^{\text {c }}$
Acetic acid	acidic, sour	1430	625	MS, RI, GC-O
2-Methylbutanoic acid	buttery, cheese-like	1691	25	MS, RI, GC-O
3-Methylbutanoic acid	buttery, cheese-like	1693	25	MS, RI, GC-O
3-Methylnonane-2,4-dione ${ }^{\text {d }}$	floral, medicinal	1739	25	RI, GC-O
(2E,4E)-deca-2,4-dienal	oily	1816	25	RI, GC-O
β-Damascenone	raisin-like, fruity	1826	25	MS, RI, GC-O
Guaiacol	phenolic, medicinal	1863	125	MS, RI, GC-O
Anisaldehyde	anise-like, raspberry-like	2052	1953125	MS, RI, GC-O
Methyl (E)-cinnamate	fruity, cinnamon-like	2083	125	MS, RI, GC-O
p-Cresol	fecal	2084	125	MS, RI, GC-O
Anisyl acetate	floral, raisin-like	2132	15625	MS, RI, GC-O
Ethyl (E)-cinnamate	cinnamon-like, fruity	2145	125	MS, RI, GC-O
Unknown	cooked, meaty	2167	25	GC-O
Eugenol	clove-like, spicy	2169	125	MS, RI, GC-O
4-Vinylguaiacol	phenolic, spicy	2207	25	MS, RI, GC-O
Anisyl alcohol	floral, anise-like	2276	390625	MS, RI, GC-O
Phenylacetic acid	buttery, honey-like	2512	125	MS, RI, GC-O
Vanillin	sweet, vanilla-like	2604	1953125	MS, RI, GC-O
3-Phenylpropanoic acid	metallic, buttery	phenolic, medicinal	2672	125
Isovanillin		2718	125	MS, RI, GC-O

Flavor Chemistry reveals

- What chemicals exist
- How much is there (concentration)
- Most impactful compounds (in extract)

29

Flavor Release

...is the process whereby flavor molecules move out of a particular molecular environment within a food and into the surrounding saliva or vapor phase (McNulty, 1987; Overbosch et al., 1991)

The most important aspect of ...is that aroma molecules leave the bolus and arrive at the olfactory epithelium in the nose where they can be sensed (R. Linforth, A. Taylor, in Flavour in Food, 2006).

Flavor release (or lack thereof) is also the basis of some masking agents/technologies that prevent or slow the release of aroma compounds thus decreasing their perception (Rankin, 2023)

31

Mass Transfer

...operations are concerned with the transfer of matter from one stream to another. In many processes a change in phase may also be involved.

Lewis, 1996

Diffusivity

Effect of lipid type, phase

TABLE 1
Comparison of Dynamically Released Quantities of Flavor ($\mu \mathrm{g}$, after 30 s) from Emulsions Comprising Different Lipid Phases ${ }^{\text {a }}$

	Water ${ }^{\text {c }}$	Lipids used in emulsions					
		Liquid lipids ${ }^{\text {b }}$				Solid lipids ${ }^{\text {b }}$	
		Triacetin	Tributyrin	Miglyol ${ }^{\text {d }}$	Butter oil ${ }^{\text {d }}$	Trimyristin ${ }^{\text {d }}$	Tripalmitin
Diacetyl	$1.22^{3} \pm 0.06$	$2.02^{\text {b }} \pm 0.01$	$2.28^{c} \pm 0.14$	$1.50{ }^{\text {d }} \pm 0.11$	$5.95{ }^{e} \pm 0.07$	$2.26{ }^{\text {c }} \pm 0.17$	$1.75{ }^{\text {f }} \pm 0.15$
Isobutyl acetate	$0.81{ }^{3} \pm 0.01$	$0.70^{b} \pm 0.03$	$0.20^{c} \pm 0.00$	$0.25^{\text {d }} \pm 0.00$	$0.33{ }^{e} \pm 0.02$	$0.31{ }^{e} \pm 0.01$	$0.31{ }^{e} \pm 0.03$
Ethyl 2-methylbutyrate	$1.22^{3} \pm 0.01$	$0.91{ }^{\text {b }} \pm 0.04$	$0.15^{c} \pm 0.01$	$0.17^{c} \pm 0.01$	$0.25{ }^{\text {d }} \pm 0.01$	$0.21^{\text {cd }} \pm 0.01$	$0.35{ }^{e} \pm 0.04$
(Z)-3-Hexenyl acetate	$6.22^{\text {a }} \pm 0.22$	$3.25{ }^{\text {b }} \pm 0.15$	$0.33^{c} \pm 0.02$	$0.48^{c} \pm 0.01$	$0.69^{\text {d }} \pm 0.01$	$0.68^{\text {d }} \pm 0.02$	$1.48{ }^{e} \pm 0.11$
2,3-Dimethylpyrazine	$0.28^{3} \pm 0.00$	$0.23^{\text {b }} \pm 0.03$	$0.30^{3, c} \pm 0.05$	$0.27^{\text {a,b }} \pm 0.01$	$0.31^{3,5} \pm 0.00$	$0.34^{\text {c }} \pm 0.01$	$0.24{ }^{\text {b }} \pm 0.00$
(Z)-3-Hexenol	$0.74^{\text {a,b }} \pm 0.01$	$0.73^{3} \pm 0.06$	$0.58^{c} \pm 0.07$	$0.60^{c} \pm 0.00$	$0.80{ }^{\text {b,d }} \pm 0.01$	$0.82{ }^{\text {d }} \pm 0.01$	$0.61^{c} \pm 0.01$
2-Isobutylthiazole	$4.50^{3} \pm 0.05$	$2.80^{\mathrm{b}} \pm 0.21$	$0.58{ }^{c} \pm 0.05$	$0.67^{c} \pm 0.00$	$0.95{ }^{\text {d }} \pm 0.02$	$0.93^{\text {d }} \pm 0.03$	$1.93{ }^{e} \pm 0.14$
Furfuryl acetate	$1.23{ }^{\text {a }} \pm 0.07$	$0.98{ }^{\text {b }} \pm 0.10$	$0.35^{c} \pm 0.05$	$0.52^{\text {d }} \pm 0.01$	$0.71^{e} \pm 0.03$	$0.69^{\text {e }} \pm 0.02$	$0.79{ }^{e} \pm 0.05$
Linalool	$1.98{ }^{3} \pm 0.10$	$1.13{ }^{\text {b }} \pm 0.15$	$0.15^{c} \pm 0.02$	$0.18{ }^{c} \pm 0.00$	$0.26{ }^{c} \pm 0.01$	$0.27^{\text {c }} \pm 0.01$	$0.42^{\text {d }} \pm 0.01$
2-Pentylpyridine	$2.36{ }^{3} \pm 0.14$	$0.75^{\text {b }} \pm 0.28$	$0.21{ }^{c} \pm 0.06$	$0.24^{\text {c }} \pm 0.09$	$0,22^{\text {c }} \pm 0.03$	$0.19^{\mathrm{C}} \pm 0.02$	$0.30{ }^{\text {c }} \pm 0.04$
D-Carvone	$1.31{ }^{3} \pm 0.01$	$0.64{ }^{\text {b }} \pm 0.13$	$0.11^{c} \pm 0.02$	$0.14^{c} \pm 0.01$	$0.17^{c} \pm 0.01$	$0.18^{c} \pm 0.01$	$0.46^{\text {d }} \pm 0.04$
β-Damascenone	$4,79^{3} \pm 0.43$	$0.89^{\text {b }} \pm 0.28$	$0.20^{c} \pm 0.06$	$0.13^{\text {c }} \pm 0.04$	$0.11^{c} \pm 0.01$	$0.13^{c} \pm 0.02$	$0.34^{c} \pm 004$
γ-Nonalactone	$0.11^{3} \pm 0.02$	$0.07^{\mathrm{b}} \pm 0.03$	$0.05^{\mathrm{b}} \pm 0.01$	$0.04{ }^{\text {b }} \pm 0.00$	$0.05^{\text {b }} \pm 0.00$	$0.07^{\mathrm{b}} \pm 0.01$	$0.05^{\text {b }} \pm 0.01$
$\mathrm{CV}^{\text {e }}$ (\%)	4.2	15.1	13.8	8.3	4.7	6.0	8.0
$\log P^{\prime}$		0.36	3.31	10.78		18.0	20.9
Molarity ($\mathrm{mol} \mathrm{L}^{-1}$)		0.27	0.17	0.09	0.06	0.06	0.05

Values with different roman letters within a line are significantly different [ANOVA and Duncan's multiple range (DMR) test, $P<0.05$].
${ }^{b}$ At $22^{\circ} \mathrm{C}$.
${ }^{\text {radap }}$ Adapted from Reference 13
${ }^{\text {d Adapted from Reference } 4 .}$
${ }^{\text {e }}$ Averace CV.

Effect of lipid type, phase

TABLE 1
Comparison of Dynamically Released Quantities of Flavor ($\mu \mathrm{g}$, after 30 s) from Emulsions Comprising Different Lipid Phases ${ }^{\text {a }}$

	Water ${ }^{c}$	Lipids used in emulsions					
		Liquid lipids ${ }^{\text {b }}$				Solid lipids ${ }^{\text {b }}$	
		Triacetin	Tributyrin	Miglyol ${ }^{\text {d }}$	Butter oil ${ }^{\text {d }}$	Trimyristin ${ }^{\text {d }}$	Tripalmitin
Diacetyl	$1.22^{\mathrm{a}} \pm 0.06$	$2.02{ }^{\text {b }} \pm 0.01$	$2.28^{c} \pm 0.14$	$1.50{ }^{\text {d }} \pm 0.11$	$5.95{ }^{e} \pm 0.07$	$2.26^{\text {c }} \pm 0.17$	$1.75{ }^{i} \pm 0.15$

Unraveling flavorant/microstructure physics

37

Matrix/structure effects

(1) water \& sugar
air bubbles
(2ce crystals
08 fat globules
\therefore milk proteins

Chemical basis of flavor (aroma)

https://www.chromatographyonline.com/view/flavour-and-fragrance-analysis-wondrous-vanilla

Flavor Impact compound: not so distinct aroma

604
M. Takahashi et al.

Table 2. Odor-Active ($\mathrm{FD} \geqq 25$) Volatiles in Tahitian Cured Vanilla Beans

Odorant ${ }^{2}$	Odor quality ${ }^{\text {b }}$	RI	FD factor	Identification mode ${ }^{\text {c }}$
Acetic acid	acidic, sour	1430	625	MS, RI, GC-O
2-Methylbutanoic acid	buttery, cheese-like	1691	25	MS, RI, GC-O
3-Methylbutanoic acid	buttery, cheese-like	1693	25	MS, RI, GC-O
3-Methylnonane-2,4-dione ${ }^{\text {d }}$	floral, medicinal	1739	25	RI, GC-O
($2 E, 4 E$)-deca-2,4-dienal ${ }^{\text {d }}$	oily	1816	25	RI, GC-O
β-Damascenone	raisin-like, fruity	1826	25	MS, RI, GC-O
Guaiacol	phenolic, medicinal	1863	125	MS, RI, GC-O
Anisaldehyde	anise-like, raspberry-like	2052	1953125	MS, RI, GC-O
Methyl (E)-cinnamate	fruity, cinnamon-like	2083	125	MS, RI, GC-O
p-Cresol		2084	125	MS, RI, GC-O
Anisyl acetate	floral, raisin-like	2132	15625	MS, RI, GC-O
Ethyl (E)-cinnamate	cinnamon-like, fruity	2145	125	MS, RI, GC-O
Unknown	cooked, meaty	2167	25	GC-O
Eugenol	clove-like, spicy	2169	125	MS, RI, GC-O
4-Vinylguaiacol	phenolic, spicy	2207	25	MS, RI, GC-O
Anisyl alcohol	floral, anise-like	2276	390625	MS, RI, GC-O
Phenylacetic acid	buttery, honey-like	2512	125	MS, RI, GC-O
Vanillin	sweet, vanilla-like	2604	1953125	MS, RI, GC-O
3-Phenylpropanoic acid	metallic, buttery	2672	125	MS, RI, GC-O
Isovanillin	phenolic, medicinal	2718	125	MS, RI, GC-O

41

3.2.12 LogP Vanillin
 \square

$\log \mathrm{Kow}=1.37$
Hansch, C., Leo, A., D. Hoekman. Exploring QSAR - Hydrophobic, Electronic, and Steric Constants. Washington, DC: American Chemical Society., 1995., p. 42

- Hazardous Substances Data Bank (HSDB)

25:1

42

Vanilla: complex chemistry, diffusivity,

 mass transfer, matrix/composition...
Alter matrix to improve flavor....?

No consistent and complete set of data is available in the literature for comprehensive model validation. In particular, the reported experimental data lack information on the temperature dependence of the diffusion coefficient in the polymer membrane and on the average number of unit cell in the foam layer. This data is critically important for the development of reliable foam diffusion models.

Pilon, 2000; Georgia Institute of Technology,

Flavor complexity: consider the music model

IC structure is complex, so are flavors
 - this is trouble

Some practical principles -> novel approaches

A few key points

A few words of caution

- These are new approaches, lack of confidence
- Principles are not universally applicable
- Re-think how we approach food flavor
- Are they really novel?

CAITIIN
 AREA UNDER CONSTRUCTION

47

A new approach Illustrated

Camilla Arndal Andersen, 2019

Practical principle \#1

Non chemistry approaches: Label, color, temperature, messaging, etc

Practical principle \#2

Significant latitude in many flavor, taste systems

Figure 1. Mean hedonic responses to increasing concentrations of (a) sucrose in lemonade and (b) to fat in milk, subdivided by the subjects' liking for low, medium, or high levels. Each point represents the mean of two replications for the number of subjects represented. - Low (3,21); - -- , medium (38,26); and $-\cdots \cdots$--- high $(10,6)$ levels. Figures in parentheses are the number of subjects represented for sucrose and butterfat respectively.

Relationship: sugar, fat to liking?

Implications?

- Sweetness, calories?
- Milkfat, calories?
- Flavor systems

Practical principle \#3

Flavor preference is fluid

55

57

Practical principle \#4

Habituation effects

61

62

Habituation effects

Fignes
 who were pressented cheeselurger followed by apple pie es the new food. The introduction of the now food was iklaysd one tral for Group 2 in retativenhip to Group I Lost whatho the
 al. 20031. Copyright 2003 by Elscrier Led Reprinted by perniaion.

63

Implications?

- Stay in market
- Incremental changes

