

Non-dairy frozen desserts and their microstructure

Didem Sözeri Atik, Ph.D.

Postdoctoral Researcher in Hartel Lab, Department of Food Science, University of Wisconsin-Madison, USA

Assistant Professor, Department of Food Engineering, Tekirdağ Namık Kemal University, Turkey

Outline

- Introduction about non-dairy frozen desserts
- Materials
- Results
 - Composition
 - Rheological behavior
 - Fat destabilization
 - Ice crystal size
 - Air cell size
 - Meltdown
- Conclusion

Plant-based foods

- Increasing **global consumer interest** in the adoption of a plantbased diet
 - Health, sustainability, and ethics
- Considerable economic success
 - Milk and meat alternatives produced from plant sources
- Meet the **preferences** and **standards** of consumers
 - Presented significant difficulties
- The main reason is the **complex composition** and **structure** of the original products
 - Reproducing these attributes using plant-based components

Non-dairy frozen desserts

- The term Plant-based or non-dairy frozen desserts
 - Does not contain dairy, eggs, or any other products derived from animals
- The production process is similar to dairy ice cream
 - But the components are different
- Future Market Insights, 2023
 - Increasing demand among young individuals in developed countries
 - The market value of them is expected to reach US\$ 4.3 billion by 2033.

Why is it hard?

- Replacing the **functional properties** of milk-based components with their **plant-based alternatives** is challenging
 - Protein
 - Fat
- Unique characteristics of milk protein and fat
- Create colors, textures, and flavors that are similar to those of ice cream

Purpose of the research

- Several factors can affect the **structural properties of** non-dairy frozen desserts
- The interactions between them **are not well understood**
- A comprehensive study on **commercial** non-dairy frozen desserts **has not been documented**
- Understand and evaluate without any controlled parameters
 - Rheological
 - Structural
 - Melting properties

Materials

- 15 vanilla non-dairy frozen dessert samples
- Three containers of each product were purchased
- Numbered randomly
- One **limitation** of the samples
 - Formulations, processing, and storage conditions prior to purchase were **unknown**
- Stored in a hardening freezer at -28.9 C
- Analyses were conducted in **triplicate**

Methods

• Total solids, total fat, and protein, density	
• Overrun, freezing point	
Rheological properties	
• Fat destabilization	
• Air cell size distribution	
Ice crystal size distribution	
• Meltdown	
r	

Composition of commercial non-dairy frozen desserts

- Pea protein
- Oat milk
- Coconut milk

Protein source	%
Soy (Tofu, milk, protein)	13
Almond (Milk, almonds)	13
Oat (Milk, Flour)	27
Pea Protein	33
Cashew (Milk)	13
Coconut (Cream, milk)	20
Lupin Protein (Isolate)	7
Non-animal Whey Protein (Non-	
animal milk)	7

- Coconut oil
- Sunflower oil
- A mixture of coconut oil and one liquid oil

Fat Source	%
Corn oil	7
Cocoa butter	7
Safflower oil	7
Sunflower oil	20
Coconut (milk, oil or cream)	80
Soybean oil	7
Tocopherols	7
Low erucic rapeseed oil	7

Composition of commercial non-dairy frozen desserts

- The variability in results can be attributed to the **diverse composition** of individual product
- Variance in processing parameters
 - Dasher speed,
 - type of freezer,
 - storage conditions
- Samples with high total solids were also found to have a lower freezing point and high fat content
- Direct effect of sweeteners on freezing point

Sample code	Total solids (%)	Density (g/ml)	Total fat	Protein	Overrun (%)	Freezing point
			(%)	(%)		(°C)
540	42.20±0.20 ^a	$1.07{\pm}0.0008^{g}$	18.60	<2	82.25±0.15 ^a	$-3.34{\pm}0.03^{f}$
381	35.68 ± 0.52^{ef}	1.11 ± 0.002^{b}	6.10	1	77.85 ± 0.39^{b}	-2.75±0.01 ^{cd}
900	35.85 ± 0.56^{ef}	$1.09{\pm}0.002^{de}$	9.50	1	$64.98{\pm}0.37^{\rm h}$	-2.32±0.10 ^a
767	37.16±0.73 ^{cde}	1.09 ± 0.003^{def}	10.80	<1	69.69 ± 0.50^{de}	-2.93±0.11 ^{de}
516	$35.49{\pm}0.57^{\rm ef}$	$1.12{\pm}0.002^{a}$	3.80	2	$71.04{\pm}0.40^{d}$	-2.44±0.11 ^{ab}
849	37.32±0.53 ^{cde}	1.10 ± 0.002^{bc}	8.70	2	68.27 ± 0.36^{ef}	-2.61±0.09 ^{bc}
732	$40.39{\pm}0.90^{ab}$	$1.09{\pm}0.004^{d}$	13.00	1	73.47±0.63°	-3.30 ± 0.12^{f}
465	$32.06{\pm}0.34^{g}$	$1.05{\pm}0.001^{h}$	14.00	2	$67.04{\pm}0.22^{fg}$	-2.74 ± 0.07^{cd}
670	39.15±0.44 ^{bc}	1.11 ± 0.002^{b}	8.80	1	$55.88 {\pm} 0.29^{j}$	-2.91±0.08 ^{de}
238	36.28±0.60 ^e	$1.08{\pm}0.002^{\rm f}$	11.70	<1	66.75 ± 0.40^{g}	-2.25±0.06 ^a
489	36.74 ± 0.56^{de}	1.09 ± 0.002^{def}	10.80	1	69.40±0.38 ^e	-2.34±0.03 ^{ab}
800	38.75 ± 0.79^{bcd}	$1.07{\pm}0.003^{g}$	15.80	3	$49.16{\pm}0.47^{k}$	-2.29±0.05ª
533	36.63±0.57 ^e	$1.10{\pm}0.002^{cd}$	9.20	2	$59.69{\pm}0.37^{i}$	-2.24±0.12 ^a
364	$39.55{\pm}0.62^{b}$	$1.08{\pm}0.002^{\rm f}$	14.40	1	54.69 ± 0.39^{j}	-3.17±0.04 ^{ef}
510	$33.97{\pm}1.53^{fg}$	$1.09{\pm}0.006^{\rm ef}$	9.50	1	81.02±1.11ª	-2.74±0.16 ^{cd}
Min	32.06±0.34	1.05±0.001	3.80	<1	49.16±0.47	-3.34±0.03
Max	42.20±0.20	1.12±0.002	18.60	3	82.25±0.1	-2.24±0.12
Mean	37.15±2.56	1.09±0.01	10.97±3.77		67.41±9.51	-2.69±0.37

Composition of commercial non-dairy frozen desserts

- Protein content lower than that of in the literature (3-4%)
- Variation is **high for fat content**
- An **inverse** relationship between **the density of the mix and fat content** is observed

Rheological behavior

Viscosity			
Important for	is affected by		
Proper whipping	Composition	No ideal viscosity	
Retention of air Good body and texture	Processing Temperature	High viscosity leads to an increase in melting resistance and a smooth texture	

Low viscosity is for **rapid whipping** (fast freezing)

In the present research;

- Flow behavior
- Thixotropic (time-dependent) rheological behavior

Why is thixotropic behavior important?

- Ability to **recover their structure** during shear
- Evaluate the relationship between structure and flow during the operation conditions of the process.

Rheological behavior

- Melted frozen desserts are used
- A wide range of values in the rheological attributes
- Non-Newtonian behavior
- Herschel Bulkley model to explain the flow behavior
- A decrease in n values may lead to a **reduction in energy consumption during the mixing** of ice cream
- An increase in viscosity or yield stress can help to resist melting

- A higher hysteresis area is the indicator of lower structural recoverability
- A low area means the **highest recovery ability**.
- Can help to understand **important measurements** for non-dairy frozen dessert quality, such as
 - meltdown
 - texture

	Yield stress(Pa)	Consistency index (K, Pa.s ⁿ)	Flow behavior index (n)	R-sq	Viscosity at 50 s ⁻¹	Hysteresis loop (Pa/s)
Min	0.20±0.03	0.01 ± 0.004	0.77±0.01 0.99		0.018 ± 0.002	15.41±2.83
Max	28.57±4.36	1.51±0.25	1.43±0.24	0.99	1.614 ± 0.070	1443.74±135.16
Mean of 15 samples	4.05±7.20	0.50±0.41	0.90±0.18		0.357±0.383	199.01±353.74

Partial coalescence/Fat destabilization

• Fat globule size distribution

10

Total percent volume of the destabilized fat clustersTotal percent volume of the fat globules and clusters

- Controlled destabilization of the emulsion is needed
- Develop an internal structure of agglomerated fat
 - Favorably alters the **texture and physical appearance**
 - Contributes to the **mechanical strength of the final pr**oduct

Fig. 11.10 Photomicrographs of fat globule clusters observed in melted ice cream. (a) Low level, (b) moderate level, and (c) high level of fat destabilization

Goff, H. D., & Hartel, R. W. (2013). Ice cream, seventh edition. In *Ice Cream, Seventh Edition*. https://doi.org/10.1007/978-1-4614-6096-1

Malvern, Panalytical, https://www.cif.iastate.edu/sites/default/files/uploads/Other_Inst/Particle%20Size/Particle%20Characterization%20Guide.pdf

Partial coalescence/Fat destabilization

- High overrun leads to a greater fat destabilization
- Higher viscosity promotes fat destabilization
- Stabilizers, emulsifiers, and proteins have an effect
- **Increasing dasher speed** and **decreasing draw temperature** promotes fat destabilization by **enhancing the shearing effect**
- Depending **on the SFC**, the coalescence degree is changing
 - 364 and 767-coconut oil+sunflower oil
 - 381-safflower oil
 - 670-coconut oil

Sample 670- 86.28% FD

Sample 381- 93.01% FD

Sample 767- 3.60% FD

Samples	FD%
540	89.12±1.12ª
381	93.01±0.64ª
900	18.46 ± 2.44^{f}
767	3.60±1.16 ^g
516	75.83±4.86 ^{bc}
849	69.59±8.74°
732	89.43±0.86 ^a
465	93.30±0.20ª
670	86.28±0.79 ^{ab}
238	31.95±0.80 ^e
489	45.72±5.05 ^d
800	90.71±1.70 ^a
533	12.50±1.03 ^{fg}
364	94.43±0.33ª
510	36.25±6.86 ^{de}
Min	3.60±1.16
Max	94.43±0.33
Mean	62.01±32.88

Ice crystal size

- In general, from a few to over 100 μm with a mean between 35-45 μm for hardened product
- A significant impact on the **smoothness** and the **eating quality** of ice cream
- Smaller than about $50 \ \mu m$ for a smooth product
- The freezing process is the key to controlling proper distribution
 - Number
 - Size
 - Shape
- Increasing total solids content gives small ice crystals
 - Because of the decreasing amount of water in the mix
- Increasing overrun can lead to a decrease in ice crystal size

Samples	Mean ice crystal size (µm)
540	42.53±3.39°
381	54.06±2.29 ^{bc}
900	42.06±5.74°
767	49.06±7.50°
516	55.60±4.91°
849	43.53±2.65°
732	51.93±4.59°
465	89.53±18.01ª
670	52.06±2.14°
238	43.06±1.19°
489	42.03±3.03°
800	41.12±4.01°
533	45.93±2.71°
364	49.63±1.00°
510	71.30±6.91 ^{ab}
Min	41.12±4.01
Max	89.53±18.0
Mean of 15 samples	50.90±13.80

Ice crystal size

- 465 does not contain any stabilizer or emulsifier and has a low total solids content
- Sweeteners are used to **adjust the freezing point** (465: Honey and 800: Sucrose)
- Spending a long time in the freezing barrel-bigger crystals
- Heat transfer rate between the mix and the refrigerant

Total solids: **800:** 38.75% **465:** 32.06%

Sample 800, mean ice crystal size: 42.12 µm

Sample 465, mean ice crystal size: 89.53 µm

Air cell size

- Fluffy and scoopable texture, as well as resistance to melting
- **Controlling air incorporation** is critical for product quality and stability
- Stabilized by individual fat globules, fat clusters, and proteins
- Factors:
 - Shear force
 - Dasher speed
 - Overrun

Samples	Mean air cell size (μm)
540	63.37±6.22 ^b
381	28.00±1.31°
900	28.71±3.12°
767	83.18±7.75ª
516	40.86±3.73°
849	75.31±6.96 ^{ab}
732	32.39±7.16°
465	77.96±7.77 ^{ab}
670	35.65±4.09°
238	32.66±3.55°
489	24.01±1.60°
800	69.08±15.03 ^{ab}
533	$78.86{\pm}2.94^{ab}$
364	34.25±6.50°
510	31.29±4.86°
Min	24.01±1.60
Max	83.18±7.75
Mean of 15 samples	49.04±22.42

Air cell size

- The highest mean air cell size: 767, and the lowest: 489
- The high degree of fat destabilization exhibits smaller air cell size
- Protein sources are different (Lupin and pea)
 - Air holding capacity
- The type of freezers can be different (batch or continuous)

Sample 489, Mean air cell size: 24.01 µm

Sample 767, Mean air cell size: 83.18 μm

- Microstructure formation
 - By manipulating formulation or changing process parameters
 - is associated with **meltdown behavior**

- Two types of meltdown behavior
 - Complete meltdown
 - Foam retention
- Fat destabilization, mix viscosity, and overrun have a major impact

 Table 2.1 Example of two types of meltdown behaviors with the same formulation in the ice creams. The complete meltdown sample contains 50% overrun and the foam retention sample has 100% overrun.

Wu, B. (2023). Understanding the Meltdown Behavior of Frozen Dessert: From Ice Cream to Model System (Doctoral dissertation, The University of Wisconsin-Madison).

Meltdown

- The **type and structure of protein** make a difference in melting rate and shape retention
- Fat sources
- Fat destabilization, viscosity, and SFC are different
- Different melting

670-Oat milk, coconut oil

540-Soy protein, corn oil

238-Pea protein+coconut milk, coconut oil

Pea protein research from the literature

G1

Figure 4-5. Non-dairy frozen dessert after 90 minutes of melting at room temperature. Frozen dessert made with protein I did not retain its shape, while the others did.

- Pea proteins which have different production methods
 - Water-based extraction
 - Extraction without chemical solvents
 - Functionalized
 - Highly dispersible
- Different meltdown behavior

Figure 4-4. Average melting curves across three repetitions. Frozen dessert made with protein I had the highest rate of melting, while frozen dessert made with protein S and C1 had the lowest rates.

Meltdown

- Increasing fat content leads to a slower meltdown rate, induction time
 - Better shape retention of melted foam
- A high percentage of fat destabilization provides rigidity and resistance to drainage
- Consistency index and yield stress may indirectly slow the drainage

	Drip Through rate (g/min)	Induction time (min)	Final height of melted ice cream (%)	Fat content (%)	Fat destabilization (%)	Total solids (%)	Consistency index (K, Pa.s ⁿ)	Yield stress (Pa)
516	1.65±0.36ª	15.31±1.15 ^f	$8.89{\pm}10.18^{hi}$	3.80	75.83±4.86 ^{bc}	35.49±0.57 ^{ef}	0.11±0.01°	$0.13{\pm}0.01^{d}$
732	0.14±0.01 ^d	30.51±9.75 ^{de}	75.07±14.96 ^{ab}	13.00	89.43±0.86ª	40.39±0.90 ^{ab}	0.61±0.20 ^{bcd}	7.63±2.96 ^b

Sample 516

Sample 732

Conclusion

A wide range of results observed in compositional and structural attributes

The **structure** has an influence on the **texture**, **stability**, **and acceptability** of the final products by consumers

Critical to understand the **structure of non-dairy frozen desserts** and the role of ingredients

Without an understanding of various structural phenomena in non-dairy systems, their structure can not be comprehended

Thanks!

- Prof. Dr. Richard W. Hartel
- Dr. Dieyckson O. Freire
- Payton Gladem
- Hartel Lab

Questions?

• Contact: Dr. Didem Sözeri Atik, <u>sozeriatik@wisc.edu</u>; <u>didem.sozeri@yahoo.com</u>

