FROZEN DESSERT

Outline

- Introduction about non-dairy frozen desserts
- Materials
- Results
- Composition
- Rheological behavior
- Fat destabilization
- Ice crystal size
- Air cell size
- Meltdown
- Conclusion

Plant-based foods

- Increasing global consumer interest in the adoption of a plantbased diet
- Health, sustainability, and ethics
- Considerable economic success
- Milk and meat alternatives produced from plant sources
- Meet the preferences and standards of consumers
- Presented significant difficulties
- The main reason is the complex composition and structure of the original products
- Reproducing these attributes using plant-based components

Non-dairy frozen desserts

- Does not contain dairy, eggs, or any other products derived from animals
- The production process is similar to dairy ice cream
- But the components are different
- Future Market Insights, 2023
- Increasing demand among young individuals in developed countries
- The market value of them is expected to reach US\$ 4.3 billion by 2033.

Why is it hard?

- Replacing the functional properties of milk-based components with their plant-based alternatives is challenging
- Protein
- Fat
- Unique characteristics of milk protein and fat
- Create colors, textures, and flavors that are similar to those of ice cream

Purpose of the research

- Several factors can affect the structural properties of non-dairy frozen desserts
- The interactions between them are not well understood
- A comprehensive study on commercial non-dairy frozen desserts has not been documented
- Understand and evaluate without any controlled parameters
- Rheological
- Structural
- Melting properties

Materials

- 15 vanilla non-dairy frozen dessert samples
- Three containers of each product were purchased
- Numbered randomly
- One limitation of the samples
- Formulations, processing, and storage conditions prior to purchase were unknown
- Stored in a hardening freezer at -28.9 C
- Analyses were conducted in triplicate

Methods

Composition of commercial non-dairy frozen desserts

- Pea protein
- Oat milk
- Coconut milk
- Coconut oil
- Sunflower oil
- A mixture of coconut oil and one liquid oil

Protein source	\%
Soy (Tofu, milk, protein)	13
Almond (Milk, almonds)	13
Oat (Milk, Flour)	27
Pea Protein	33
Cashew (Milk)	13
Coconut (Cream, milk)	20
Lupin Protein (Isolate)	7
Non-animal Whey Protein (Non- animal milk)	7

Fat Source	$\%$
Corn oil	7
Cocoa butter	7
Safflower oil	7
Sunflower oil	20
Coconut (milk, oil or cream)	80
Soybean oil	7
Tocopherols	7
Low erucic rapeseed oil	7

Composition of commercial non-dairy frozen desserts

- The variability in results can be attributed to the diverse composition of individual product
- Variance in processing parameters
- Dasher speed,
- type of freezer,
- storage conditions
- Samples with high total solids were also found to have a lower freezing point and high fat content
- Direct effect of sweeteners on freezing point
$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { Sample code } & \text { Total solids (\%) } & \text { Density (g/ml) } & \begin{array}{c}\text { Total fat } \\ \mathbf{(\%)}\end{array} & \begin{array}{c}\text { Protein } \\ (\%)\end{array} & \text { Overrun (\%) } & \text { Freezing point } \\ \left(\mathbf{C}^{\circ} \mathbf{C}\right)\end{array}\right]$

Composition of commercial non-dairy frozen desserts

- Protein content lower than that of in the literature (3-4\%)
- Variation is high for fat content
- An inverse relationship between the density of the mix and fat content is observed
$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { Sample code } & \text { Total solids (\%) } & \text { Density (g/ml) } & \begin{array}{c}\text { Total fat } \\ \mathbf{(\%)}\end{array} & \begin{array}{c}\text { Protein } \\ (\%)\end{array} & \text { Overrun (\%) } & \text { Freezing point } \\ \left({ }^{\circ} \mathbf{C}\right)\end{array}\right]$

Rheological behavior

Viscosity	is affected by
Important for Proper whipping Retention of air Good body and texture Composition Processing TemperatureNo ideal viscosity an increase in melting resistance and a smooth texture Low viscosity is for rapid whipping (fast freezing)	

In the present research;

- Flow behavior
- Thixotropic (time-dependent) rheological behavior

Why is thixotropic behavior important?

- Ability to recover their structure during shear
- Evaluate the relationship between structure and flow during the operation conditions of the process.

Rheological behavior

- Melted frozen desserts are used
- A wide range of values in the rheological attributes
- Non-Newtonian behavior
- Herschel Bulkley model to explain the flow behavior
- A decrease in n values may lead to a reduction in energy consumption during the mixing of ice cream
- An increase in viscosity or yield stress can help to resist melting
- A higher hysteresis area is the indicator of lower structural recoverability
- A low area means the highest recovery ability.
- Can help to understand important measurements for non-dairy frozen dessert quality, such as
- meltdown
- texture

	Yield stress(Pa)	Consistency index $\left(K, \text { Pa.s }{ }^{\mathrm{n}}\right)$	Flow behavior index (n)	R-sq	Viscosity at $50 \mathrm{~s}^{\mathbf{- 1}}$	Hysteresis loop (Pa / s)
Min	0.20 ± 0.03	0.01 ± 0.004	0.77 ± 0.01	0.99	0.018 ± 0.002	15.41 ± 2.83
Max	28.57 ± 4.36	1.51 ± 0.25	1.43 ± 0.24	0.99	1.614 ± 0.070	1443.74 ± 135.16
Mean of 15 samples	4.05 ± 7.20	0.50 ± 0.41	0.90 ± 0.18		0.357 ± 0.383	199.01 ± 353.74

Partial coalescence/Fat destabilization

- Fat globule size distribution

$$
\frac{\text { Total percent volume of the destabilized fat clusters }}{\text { Total percent volume of the fat globules and clusters }}
$$

- Controlled destabilization of the emulsion is needed
- Develop an internal structure of agglomerated fat
- Favorably alters the texture and physical appearance
- Contributes to the mechanical strength of the final product

Fig. 11.10 Photomicrographs of fat globule clusters observed in melted ice cream. (a) Low level, (b) moderate level, and (c) high level of fat destabilization

Goff, H. D., \& Hartel, R. W. (2013). Ice cream, seventh edition. In Ice Cream, Seventh Edition. https://doi.org/10.1007/978-1-4614-6096-1

Partial coalescence/Fat destabilization

- High overrun leads to a greater fat destabilization
- Higher viscosity promotes fat destabilization
- Stabilizers, emulsifiers, and proteins have an effect
- Increasing dasher speed and decreasing diraw temperature promotes fat destabilization by enhancing the shearing effect
- Depending on the SFC, the coalescence degree is changing
- 364 and 767-coconut oil+sunflower oil
- 381-safflower oil

Sample 670-86.28\% FD

- 670-coconut oil

Sample 381-93.01\% FD

Samples	FD\%
$\mathbf{5 4 0}$	$89.12 \pm 1.12^{\mathrm{a}}$
$\mathbf{3 8 1}$	$93.01 \pm 0.64^{\mathrm{a}}$
$\mathbf{9 0 0}$	$18.46 \pm 2.44^{\mathrm{f}}$
$\mathbf{7 6 7}$	$3.60 \pm 1.16^{\mathrm{g}}$
$\mathbf{5 1 6}$	$75.83 \pm 4.86^{\mathrm{bc}}$
$\mathbf{8 4 9}$	$69.59 \pm 8.74^{\mathrm{c}}$
$\mathbf{7 3 2}$	$89.43 \pm 0.86^{\mathrm{a}}$
$\mathbf{4 6 5}$	$93.30 \pm 0.20^{\mathrm{a}}$
$\mathbf{6 7 0}$	$86.28 \pm 0.79^{\mathrm{ab}}$
$\mathbf{2 3 8}$	$31.95 \pm 0.80^{\mathrm{e}}$
$\mathbf{4 8 9}$	$45.72 \pm 5.05^{\mathrm{d}}$
$\mathbf{8 0 0}$	$90.71 \pm 1.70^{\mathrm{a}}$
$\mathbf{5 3 3}$	$12.50 \pm 1.03^{\mathrm{fg}}$
$\mathbf{3 6 4}$	$94.43 \pm 0.33^{\mathrm{a}}$
$\mathbf{5 1 0}$	$36.25 \pm 6.86^{\text {de }}$
$\mathbf{M i n}$	3.60 ± 1.16
$\mathbf{M a x}$	94.43 ± 0.33
$\mathbf{M e a n}$	62.01 ± 32.88

Ice crystal size

- 465 does not contain any stabilizer or emulsifier and has a low total solids content
- Sweeteners are used to adjust the freezing point (465: Honey and 800: Sucrose)
- Spending a long time in the freezing barrel-bigger crystals
- Heat transfer rate between the mix and the refrigerant

Sample 465, mean ice crystal size: $89.53 \mu \mathrm{~m}$

Air cell size

- Fluffy and scoopable texture, as well as resistance to melting
- Controlling air incorporation is critical for product quality and stability
- Stabilized by individual fat globules, fat clusters, and proteins
- Factors
- Shear force
- Dasher speed
- Overrun

Samples	Mean air cell size $(\mu \mathrm{m})$
$\mathbf{5 4 0}$	$63.37 \pm 6.22^{\mathrm{b}}$
$\mathbf{3 8 1}$	$28.00 \pm 1.31^{\mathrm{c}}$
$\mathbf{9 0 0}$	$28.71 \pm 3.12^{\mathrm{c}}$
$\mathbf{7 6 7}$	$83.18 \pm 7.75^{\mathrm{a}}$
$\mathbf{5 1 6}$	$40.86 \pm 3.73^{\mathrm{c}}$
$\mathbf{8 4 9}$	$75.31 \pm 6.96^{\mathrm{ab}}$
$\mathbf{7 3 2}$	$32.39 \pm 7.16^{\mathrm{c}}$
$\mathbf{4 6 5}$	$77.96 \pm 7.77^{\mathrm{ab}}$
$\mathbf{6 7 0}$	$35.65 \pm 4.09^{\mathrm{c}}$
$\mathbf{2 3 8}$	$32.66 \pm 3.55^{\mathrm{c}}$
$\mathbf{4 8 9}$	$24.01 \pm 1.60^{\mathrm{c}}$
$\mathbf{8 0 0}$	$69.08 \pm 15.03^{\mathrm{ab}}$
$\mathbf{5 3 3}$	$78.86 \pm 2.94^{\mathrm{ab}}$
$\mathbf{3 6 4}$	$34.25 \pm 6.50^{\mathrm{c}}$
$\mathbf{5 1 0}$	$31.29 \pm 4.86^{\mathrm{c}}$
Min	24.01 ± 1.60
Max	83.18 ± 7.75
Mean of 15 samples	49.04 ± 22.42

Air cell size

- The highest mean air cell size: 767, and the lowest: 489
- The high degree of fat destabilization exhibits smaller air cell size
- Protein sources are different (Lupin and pea)
- Air holding capacity
- The type of freezers can be different (batch or continuous)

Sample 767, Mean air cell size: $83.18 \mu \mathrm{~m}$

Meltdown

- Microstructure formation
- By manipulating formulation or changing process parameters
- is associated with meltdown behavior

- Two types of meltdown behavior
- Complete meltdown
- Foam retention
- Fat destabilization, mix viscosity, and overrun have a major impact

Table 2.1 Example of two types of meltdown behaviors with the same formulation in the ice 100% overrun.

Wu, B. (2023). Understanding the Meltdown Behavior of Frozen Dessert: From Ice Cream to Model System (Doctoral dissertation, The University of Wisconsin-Madison).

Meltdown

- The type and structure of protein make a difference in melting rate and shape retention

- Fat sources
- Fat destabilization, viscosity, and SFC are different
- Different melting

238-Pea protein+coconut milk, coconut oil

Pea protein research from the literature

I

S

Figure 4-5. Non-dairy frozen dessert after 90 minutes of melting at room temperature. Frozen dessert made with protein I did not retain its shape, while the others did.

- Pea proteins which have different production methods
- Water-based extraction
- Extraction without chemical solvents
- Functionalized
- Highly dispersible
- Different meltdown behavior

Figure 4-4. Average melting curves across three repetitions. Frozen dessert made with protein I had the highest rate of melting, while frozen dessert made with protein S and C 1 had the lowest rates.

Meltdown

- Increasing fat content leads to a slower meltdown rate, induction time
- Better shape retention of melted foam
- A high percentage of fat destabilization provides rigidity and resistance to drainage
- Consistency index and yield stress may indirectly slow the drainage

Sample 732

Conclusion

A wide range of results observed in compositional and structural attributes

The structure has an influence on the texture, stability, and acceptability of the final products by consumers

Critical to understand the structure of non-dairy frozen desserts and the role of ingredients

Without an understanding of various structural phenomena in non-dairy systems, their structure can not be comprehended

- Prof. Dr. Richard W. Hartel

Thanks!

- Dr. Dieyckson O. Freire
- Payton Gladem
- Hartel Lab

Questions?

- Contact: Dr. Didem Sözeri Atik, sozeriatik@wisc.edu ; didem.sozeri@yahoo.com

