ICE CREAM MICROSTRUCTURE

Richard W Hartel

 Dept Food Science University of Wisconsin Madison, WI USA

Ice Cream at a Structural Level

- Ice crystals
- Provide cooling effect and hardness
- Air cells
- Reduce density
- Partially-coalesced fat globule network
- Affects melt-down rate and hardness of ice cream
- Proteins and hydrocolloids
- Network in serum phase
- Serum phase
- Dissolved sugars, minerals, proteins, etc.
- Some liquid even at very low temperature

Ice Cream Processing

Ice

- nucleation
- growth

Air

- incorporation
- breakdown

Lipid

- growth
- partial coalescence

Ice

- growth

Air

- coalescence
$\underline{\text { Lipid }}$
- growth

Ice

- melting
- growth
- ripening

Air

- coalescence

Lactose

- crystallization

Scraped Surface Freezer (SSF) Development of Structures

- Formation of ice crystals
- Scraping of slush off wall of freezer; mixing of slush in center of barrel; ripening and growth to form ice crystal size distribution

Scraped Surface Freezer (SSF) Development of Structures

- Continued crystallization of lipid during freezing
- Fat destabilization
- Breakdown of emulsion due to shearing forces in freezer; partial coalescence due to liquid fat

Warren \& Hartel (2017)

0:0 ER, 5.9%

90:10 ER, 28.3\%

100:0 ER, 19.6\%

Scraped Surface Freezer (SSF) Development of Structures

- Aeration
- Increase in overrun; breakdown of air cells into tiny bubbles; development of air cell distribution; stabilization of air cells by proteins, destabilized fat globules and viscous unfrozen matrix

Scraped Surface Freezers

- Exactly what goes on within the barrel of the freezer with all of these structures being developed at the same time is still uncertain
- Recent attempts at modeling the processes within the freezer may provide better understanding

Residence Time Distribution (RTD)

- The path of an element of fluid from inlet to outlet of a scraped surface heat exchanger is complicated
- Scraping at wall and distribution of cooler fluid into the center of the barrel
- This complicated flow pattern results in a distribution of times for any element to dwell within the heat exchanger

Residence Time Distribution (RTD)

- Some fluid elements exit earlier than others
- Not all fluid elements see the same conditions within the freezer barrel
- Some ice crystals remain in the barrel longer and can grow to larger size than those that exit much quicker
- Similar for air bubbles and partially-coalesced fat globules
- This behavior explains, in part, the distribution in sizes of these structural elements

Measuring RTD in a Scraped Surface Freezer

Measure RTD for 5 different dasher designs at different operating conditions to correlate against development of structures

Dasher Speed

Overrun

Throughput Rate

New/Recent Directions Structures/Melt Down

- "No melt" ice cream based on addition of polyphenols
- CJ Wicks
- Rheological properties of continuous phase
- Phase separation of protein/hydrocolloids
- Dr. Jasmine Wu

No-Melt Ice Cream?

- Japanese "no-melt" ice cream
- Strawberry extract
- After 2 hours, all the ice is melted, these ice creams just don't collapse
"no-collapse" ice cream

https://youtu.be/GFE91TTJfN8
- Must be related to the structures
- Fat globules, protein
"Polyphenol liquid has properties to make it difficult for water and oil to separate so that a popsicle containing it will be able to retain the original shape of the cream for a longer time than usual and be hard to melt",

Tomihisa Ota

Professor Emeritus of Pharmacy at Kanazawa University, Co-Developer of Ice Cream

After 30 mins

Ice Cream Melting

- Not all ice creams are created equal - or melt in the same way
- Drip-through test - slabs on mesh, measure drip through weight and height change

High Fat Destabilization Minimal Collapse

Objective 1

Do polyphenols affect partial coalescence of fat or is the primary mechanism protein mediated?

Complex Viscosity

Wicks et al., 2023

Mean Particle Size

Dispersion Method

- SDS releases fat crystals to disrupt partially-coalesced fat
- but also breaks non-covalent bonds
- EDTA sequesters Ca
- disrupts casein micelle structure

Objective 3

Evaluate logical target PPs and/or extracts for further study in frozen dessert systems.

Experimental Design:

Fat \%	10	13	16
Protein \%	2	3.5	5
PP \%	0	3	

Methods:

- Mix Preparation with polyphenol
- Particle Size Distribution
- Microscope Images
- pH of mix
- Overrun
- Rheology
- Melting Rate
- Ice Crystals

Mix and Ice Cream Preparation

Ingredient
Cream
Non-Fat Dry Milk
Milk Protein Concentrate (80%)
Sugar
Tannic Acid
Water
Mono and Diglycerides (0.12%)
Stabilizers (0.2%)

Microscope Images

Drip Weight

Future Work

- Evaluate TA level on melt properties
- Correlate to structure development through microscopy and rheology
- Evaluate various extracts and other delivery formats as developed from Objective 2
- Can extracts modulate melting properties of frozen desserts?
- Non-dairy products?

https://youtu.be/sA-lc6ZnWLo

Rheological Effects

- Previous work has shown that viscosity of the mix had the most important effect on melt-down
- Overrun and partial coalescence were only important at the lowest level of stabilizer addition

Rheological Effects

- Phase 2. The effect of rheological properties on meltdown behavior of non-aerated frozen sucrose system
- Phase 3. The effect of rheological properties on meltdown behavior of aerated frozen sucrose system
- Phase 4. The effect of protein-polysaccharides interaction on meltdown behavior of aerated frozen sucrose system

Wu J., Understanding the meltdown behavior of frozen dessert:
from ice cream to model system, PhD Dissertation, UW-Madison (2023)

Phase 2. Rheology on non-aerated system

Hypothesis: The effect of rheological properties on melting and dripping is caused by either apparent viscosity or shear-thinning behavior in the non-aerated frozen sucrose system.
$>$ Apparent mix viscosity (at $5 \mathrm{~s}^{-1}$ shear rate)
$>$ Shear-thinning behavior

- Flow rate index (power law model) $\boldsymbol{\sigma}=\boldsymbol{\eta} \dot{\boldsymbol{\gamma}}^{\boldsymbol{n}}$

Experimental design

Same flow index (0.74)	Apparent viscosity at $5 \mathrm{~s}^{-1}$	Same viscosity at $5 \mathrm{~s}^{-1}$ (0.20)	Flow index
$\begin{aligned} & 0.22 \% \text { guar gum } \\ & \text { (GG) } \end{aligned}$	$0.10 \pm 0.00^{\text {a }}$	0.11% xanthan	$0.47 \pm 0.01^{\text {a }}$
		0.28\% guar gum (GG)	$0.66 \pm 0.00^{\text {b }}$
0.3% locust bean gum (LBG)	$0.15 \pm 0.00^{\text {b }}$		
		0.25% sodium alginate	$0.76 \pm 0.00^{\text {c }}$
0.3% sodium alginate (SA)	$0.26 \pm 0.00^{\text {c }}$	(SA)	$0.76 \pm 0.00^{\text {c }}$
		0.7\% pectin	$0.86 \pm 0.01^{\text {d }}$

Phase 2. Rheology on non-aerated system

Surface tension

*Filled: same apparent viscosity; hollow: same flow rate index

Same flow rate index*	
$0.22 \% \mathrm{GG}$	$58.4 \pm 0.8^{\mathrm{b}}$
$0.3 \% \mathrm{LBG}$	$54.0 \pm 0.6^{\mathrm{c}}$
0.3% SA	$63.2 \pm 0.9^{\mathrm{a}}$
Same apparent viscosity*	
0.11% XAN	$69.0 \pm 1.0^{\mathrm{a}}$
$0.28 \% \mathrm{GG}$	$56.4 \pm 1.0^{\mathrm{c}}$
0.25% SA	$64.9 \pm 1.0^{\mathrm{b}}$
0.7% PEC	$56.8 \pm 1.2^{\mathrm{c}}$

- Polysaccharides reduce surface tension
- The surface tension is related to the natures of polysaccharide
- Surface-active property results in air incorporation

Overrun (\%)

Same flow rate index*	
0.22% GG	$17.5 \pm 1.4^{\mathrm{a}}$
$0.3 \% \mathrm{LBG}$	$13.7 \pm 1.0^{\mathrm{b}}$
0.3% SA	$11.9 \pm 2.9^{\mathrm{b}}$
Same apparent viscosity*	
0.11% XAN	$12.4 \pm 0.7^{\mathrm{b}}$
0.28% GG	$16.1 \pm 0.8^{\mathrm{a}}$
0.25% SA	$9.2 \pm 1.5^{\mathrm{c}}$
0.7% PEC	$9.8 \pm 1.4^{\mathrm{c}}$

Phase 2. Rheology on non-aerated system

Meltdown

Key conclusions:

- No significant difference was found in induction time
- The nature of polysaccharide affected the melting rate.
- Anionic polysaccharide showed a faster melting rate than galactomannan

Phase 3. Rheology on aerated system

Hypothesis: The effect of rheological properties on melting and dripping is caused by either apparent viscosity or shear-thinning behavior in the aerated frozen sucrose system.

Polysorbate 80		Overrun
0.04%		45%
0.15%		75%

Experimental design

	Sample	Target overrun	Flow rate index	Apparent viscosity at $5 \mathrm{~s}^{-1}$ shear rate
Same flow rate index	0.014\% xanthan	45\%	0.76 ± 0.01	0.02 ± 0.00
		75\%		
	0.22\% guar gum	45\%	0.74 ± 0.00	0.10 ± 0.00
		75\%		
Same apparent viscosity	0.11\% xanthan	45\%	0.47 ± 0.00	0.20 ± 0.00
		75\%		
	0.28\% guar gum	45\%	0.69 ± 0.00	0.19 ± 0.00
		75\%		

Phase 3. Rheology on aerated system

Meltdown

- A strong correlation was found between apparent viscosity and induction time, but not between the flow rate index and induction time

- The effect of overrun was only seen in xanthan, where increase in overrun decreased melting rate.

Phase 4. Phase separation on meltdown

Hypothesis: The protein-polysaccharide phase separation in serum results in a slow meltdown behavior due to the interaction between two immiscible phases.

Background			I Experimental design			
me			$\begin{gathered} \text { Protein } \\ \left(\mathrm{NFDM}^{*}\right. \end{gathered}$	$\begin{array}{\|c} \text { Locust } \\ \text { bean } \\ \text { gum } \end{array}$	$\begin{aligned} & \text { Guar } \\ & \text { gum } \end{aligned}$	$\begin{gathered} \mathrm{K}- \\ \text { carrageenan } \end{gathered}$
-	n		4\%	0.05\%	0.05\%	0\%
teil			6\%	0.15\%	0.15\%	0.015\%
(20)			8\%			
$\begin{array}{\|c} \text { Phase } \\ \text { separation } \end{array}$		No phase separation	*NFDM: non-fat dry milk			

Phase 4. Phase separation on meltdown

Phase separation

- CLSM provided additional information on phase separation
- Freezing prevented phase separation on LBG system

Phase 4. Phase separation on meltdown

Meltdown

6\% protein | Mix | $0.05 \% \mathrm{LBG}$ |
| :--- | :--- |

6\% protein

Key conclusions:

- Correlation between rheology and induction time only seen in LBG.
- Protein affected meltdown by achieving different overrun
- The more phase separation in the dripthrough solution, the slower the melting rate (carrageenan+GG).

Phase 4. Phase separation on meltdown

Meltdown behavior

NFDM + LBG/GG

Locust bean

Conclusions

- Connection between melt-down and rheological properties still remains unclear
- Locust bean gum in general slows down the meltdown process through cryo-gel formation
- Freezing prevented phase separation in the locust bean gum system

Future recommendations

- The types of polysaccharide influence meltdown
in the ice cream system
- Local viscosity vs. bulk viscosity in phase separation system

- The structure in the serum phase changes during freezing-melting process

Ice cream is complex and there is still so much we don't understand

