ICE CREAM MICROSTRUCTURE

Richard W Hartel Dept Food Science University of Wisconsin Madison, WI USA

Ice Cream at a Structural Level

- Ice crystals
 - Provide cooling effect and hardness
- Air cells
 - Reduce density
- Partially-coalesced fat globule network
 - Affects melt-down rate and hardness of ice cream
- Proteins and hydrocolloids
 - Network in serum phase
- Serum phase
 - Dissolved sugars, minerals, proteins, etc.
 - Some liquid even at very low temperature

Ice Cream Processing

Scraped Surface Freezer (SSF) Development of Structures

- Formation of ice crystals
 - Scraping of slush off wall of freezer; mixing of slush in center of barrel; ripening and growth to form ice crystal size distribution

Scraped Surface Freezer (SSF) Development of Structures

- Continued crystallization of lipid during freezing
- Fat destabilization
 - Breakdown of emulsion due to shearing forces in freezer; partial coalescence due to liquid fat

Scraped Surface Freezer (SSF) Development of Structures

- Aeration
 - Increase in overrun; breakdown of air cells into tiny bubbles; development of air cell distribution; stabilization of air cells by proteins, destabilized fat globules and viscous unfrozen matrix

Scraped Surface Freezers

- Exactly what goes on within the barrel of the freezer with all of these structures being developed at the same time is still uncertain
- Recent attempts at modeling the processes within the freezer may provide better understanding

Residence Time Distribution (RTD)

- The path of an element of fluid from inlet to outlet of a scraped surface heat exchanger is complicated
 - Scraping at wall and distribution of cooler fluid into the center of the barrel
- This complicated flow pattern results in a distribution of times for any element to dwell within the heat exchanger

Residence Time Distribution (RTD)

- Some fluid elements exit earlier than others
- Not all fluid elements see the same conditions within the freezer barrel
 - Some ice crystals remain in the barrel longer and can grow to larger size than those that exit much quicker
 - Similar for air bubbles and partially-coalesced fat globules
 - This behavior explains, in part, the distribution in sizes of these structural elements

Measuring RTD in a Scraped Surface Freezer

Measure RTD for 5 different dasher designs at different operating conditions to correlate against development of structures

400

400

New/Recent Directions Structures/Melt Down

- "No melt" ice cream based on addition of polyphenols
 - CJ Wicks
- Rheological properties of continuous phase
- Phase separation of protein/hydrocolloids - Dr. Jasmine Wu

No-Melt Ice Cream?

- Japanese "no-melt" ice cream
 Strawberry extract
- After 2 hours, all the ice is melted, these ice creams just don't collapse

"no-collapse" ice cream

- Must be related to the structures
 - Fat globules, protein

"Polyphenol liquid has properties to make it difficult for water and oil to separate so that a popsicle containing it will be able to retain the original shape of the cream for a longer time than usual and be hard to melt"

Tomihisa Ota Professor Emeritus of Pharmacy at Kanazawa University, Co-Developer of Ice Cream

After 30 mins

Ice Cream Melting

- Not all ice creams are created equal – or melt in the same way

- Drip-through test – slabs on mesh, measure drip through weight and height change

Objective 1

Complex Viscosity

Wicks et al., 2023

Mean Particle Size

Wicks et al., 2023

Objective 3

Evaluate logical target PPs and/or extracts for further study in frozen dessert systems.

Experimental Design:			
Fat %	10	13	16
Protein %	2	3.5	5
PP %	0	3	

Methods:

- Mix Preparation with polyphenol
- Particle Size Distribution
- Microscope Images
- pH of mix
- Overrun
- Rheology
- Melting Rate
- Ice Crystals

Mix and Ice Cream Preparation

Ingredient		
Cream		
Non-Fat Dry Milk		
Milk Protein Concentrate (80%)		
Sugar		
Tannic Acid		
Water		
Mono and Diglycerides (0.12%)		
Stabilizers (0.2%)		

Microscope Images

Drip Weight

Future Work

- Evaluate TA level on melt properties
 - Correlate to structure development through microscopy and rheology
- Evaluate various extracts and other delivery formats as developed from Objective 2
- Can extracts modulate melting properties of frozen desserts?
 - Non-dairy products?

https://youtu.be/sA-lc6ZnWLo

Funding acknowledgment: USDA NIFA (WIS03038 GRANT 12905866)

Rheological Effects

- Previous work has shown that viscosity of the mix had the most important effect on melt-down
 - Overrun and partial coalescence were only important at the lowest level of stabilizer addition

Rheological Effects

- Phase 2. The effect of rheological properties on meltdown behavior of non-aerated frozen sucrose system
- Phase 3. The effect of rheological properties on meltdown behavior of aerated frozen sucrose system
- Phase 4. The effect of protein-polysaccharides interaction on meltdown behavior of aerated frozen sucrose system

Wu J., Understanding the meltdown behavior of frozen dessert: from ice cream to model system, PhD Dissertation, UW-Madison (2023)

Phase 2. Rheology on non-aerated system

Hypothesis: The effect of rheological properties on melting and dripping is caused by either apparent viscosity or shear-thinning behavior in the non-aerated frozen sucrose system.

- > Apparent mix viscosity (at 5 s⁻¹ shear rate)
- ≻Shear-thinning behavior
 - Flow rate index (power law model) $\sigma = \eta \dot{\gamma}^n$

Same flow index (0.74)	Apparent viscosity at 5 s ⁻¹	Same viscosity at 5 s ⁻¹ (0.20)	Flow index
0.22% guar gum	$0.10{\pm}0.00^{a}$	0.11% xanthan	$0.47{\pm}0.01^{a}$
(GG)	0.10±0.00	0.28% guar gum (GG)	$0.66{\pm}0.00^{ m b}$
0.3% locust bean	$0.15{\pm}0.00^{b}$		0.00±0.00
gum (LBG)	0.13±0.00	0.25% sodium alginate	0.76±0.00°
0.3% sodium alginate (SA)	0.26+0.000	(SA)	0.70±0.00
	0.26±0.00°	0.7% pectin	$0.86{\pm}0.01^{d}$

Experimental design

Phase 2. Rheology on non-aerated system

Surface tension

*Filled: same apparent viscosity; hollow: same flow rate index

Same flow rate index*		
0.22% GG	$58.4\pm0.8^{\text{b}}$	
0.3% LBG	$\frac{54.0 \pm 0.6^{\circ}}{2}$	
0.3% SA	$63.2\pm0.9^{\mathrm{a}}$	
Same apparent viscosity*		
0.11% XAN	$\frac{69.0 \pm 1.0^{a}}{100}$	
0.28% GG	$56.4 \pm 1.0^{\circ}$	
0.25% SA	64.9 ± 1.0^{b}	
0.7% PEC	$56.8 \pm 1.2^{\circ}$	

- Polysaccharides reduce surface tension
- The surface tension is related to the natures of polysaccharide
- Surface-active property results in air incorporation

Overrun (%)

Same flow rate index*			
0.22% GG	17.5 ± 1.4^{a}		
0.3% LBG	13.7 ± 1.0^{b}		
0.3% SA	$11.9\pm2.9^{\mathrm{b}}$		
Same apparent viscosity*			
0.11% XAN	12.4 ± 0.7^{b}		
0.28% GG	$16.1\pm0.8^{\rm a}$		
0.25% SA	$9.2 \pm 1.5^{\circ}$		
0.7% PEC	$9.8 \pm 1.4^{\circ}$		

Phase 2. Rheology on non-aerated system

<u>Meltdown</u>

Key conclusions:

- No significant difference was found in induction time
- The nature of polysaccharide affected the melting rate.
- Anionic polysaccharide showed a faster melting rate than galactomannan

0.7% pectin

0.3% locust bean gum

Phase 3. Rheology on aerated system

Hypothesis: The effect of rheological properties on melting and dripping is caused by either apparent viscosity or shear-thinning behavior in the aerated frozen sucrose system.

Polysorbate 80		Overrun
0.04%		45%
0.15%	V	75%

Experimental design

	Sample	Target overrun	Flow rate index	Apparent viscosity at 5 s ⁻¹ shear rate
Same flow rate index	0.014% xanthan	45%	0.76 ± 0.01	0.02 ± 0.00
		75%	0.70±0.01	
	0.22% guar gum	45%	0.74 ± 0.00	0.10 ± 0.00
		75%		
Same apparent viscosity	0.11% xanthan	45%	0.47 ± 0.00	0.20 ± 0.00
		75%	0.47 ± 0.00	
	0.28% guar gum	45%	0.69 ± 0.00	$0.19\pm\!0.00$
		75%		

Phase 3. Rheology on aerated system

Meltdown

- A strong correlation was found between apparent viscosity and induction time, but not between the flow rate index and induction time
- The effect of overrun was only seen in xanthan, where increase in overrun decreased melting rate.

Phase 4. Phase separation on meltdown

Hypothesis: The protein-polysaccharide phase separation in serum results in a slow meltdown behavior due to the interaction between two immiscible phases.

Phase 4. Phase separation on meltdown

Phase separation

- CLSM provided additional information on phase separation
- Freezing prevented phase separation on LBG system

Phase 4. Phase separation on meltdown

Phase 4. Phase separation on meltdown

Meltdown behavior

NFDM+LBG/GG

Conclusions

- Connection between melt-down and rheological properties still remains unclear
- Locust bean gum in general slows down the meltdown process through cryo-gel formation
- Freezing prevented phase separation in the locust bean gum system

Future recommendations

- The types of polysaccharide influence meltdown in the ice cream system
- Local viscosity vs. bulk viscosity in phase separation system
- The structure in the serum phase changes during freezing-melting process

Thanks to all the students who have contributed to these studies

